

WEAR RESISTANCE OF HIGHLY CROSSLINKED AND REMELTED POLYETHYLENES AFTER ION IMPLANTATION AND ACCELERATED AGING

Francisco J Medel, Dolores Mariscal, Enrique Gómez-Barrena, **José A Puértolas**

UNIVERSIDAD DE ZARAGOZA (SPAIN). BIOMATERIALS GROUP

DPTO. CIENCIA Y TECNOLOGÍA DE MATERIALES Y FLUIDOS CPS – ICMA – I3A; SPAIN

INTRODUCTION

• 1st Generation highly crosslinked polyethylenes have replaced historical and conventional polyethylenes:

- \checkmark High irradiation dose => Wear
- ✓ Post-irradiation annealing/remelting => Oxidation
- Irradiation and Remelting worsen mechanical properties. Annealing does not guarantee complete oxidative stability
- UHMWPE/metal has worse wear performance than ceramic/ceramic bearings.

ION IMPLANTATION (II) SURFACE MODIFICATION TECHNIQUE

METALS POLYMERS, BIOMATERIALS

<u>UHMWPE</u>

• **II, Plasma II and Plasma Induced II** N⁺, H⁺, He⁺, C⁺, Ar⁺, and Xe⁺

• Fast Atom Beam (FAB)

Ar, He, H and N

HARDNESS ELASTIC MODULUS WEAR RESISTANCE WETTABILITY HEMOCOMPATIBILITY ANTICALCIFIC BEHAVIOR RESISTANCE TO BIOFOULING

WHAT ARE THE EFFECTS ON HIGHLY CROSSLINKED POLYETHYLENE?

INFLUENCE OF ION IMPLANTATION

IONIC SPECIES

IMPLANTATION DOSE

HIGHLY CROSSLINKED/REMELTED PE

SURFACE MECHANICAL PROPERTIES

WEAR RESISTANCE

BEFORE/AFTER ACCELERATED AGING

HYPOTHESES

• Ion implantation would improve the surface mechanical properties and **wear resistance** of highly crosslinked and remelted polyethylenes (XPE).

• Ion implanted XPE would keep its wear resistance even after a severe oxidative challenge.

UHMWPE GUR 1050

Compression Moulded (Perplas Medical)

Thickness6 mmØ12 mm

E-beam (100 kGy)

Room Temperature; Air

Remelting (150 °C) Near vacuum, 2 hours, slow cooling

ION IMPLANTATION

+

Energy 90 keV, Base Pressure 3x10⁻⁷ mbar, Intensity 0.20 mA

IONIC SPECIES:

He⁺ and N⁺

DOSES: 5, 10 and 20x10¹⁵ ions/cm²

MATERIALS

MATERIALS	IONIC SPECIES	DOSE (ions/cm ²)
NIMP		
He05	He ⁺	5x10 ¹⁵
He20	He ⁺	20×10^{15}
N05	N^+	5x10 ¹⁵
N10	N^+	10x10 ¹⁵

METHODS

ION IMPLANTATION SIMULATIONS

THEORETICAL

PENETRATION DEPTHS

IONIZATION RANGES

TRIM SIMULATIONS

He⁺ and N⁺

90 keV

SURFACE MECHANICAL PROPERTIES

MICROHARDNESS

ELASTIC MODULUS

Ultramicrodurometer (Fischerscope H100) Maximum load: 2 mN 20 steps (1 second each)

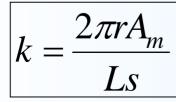
WEAR PERFORMANCE

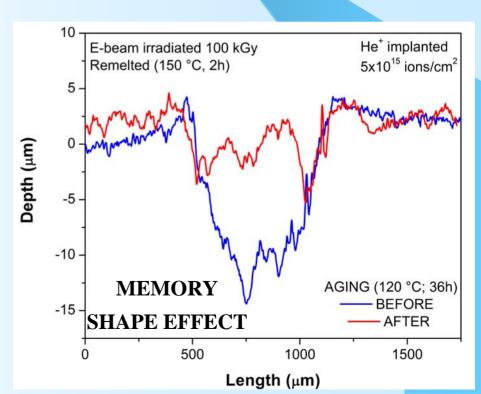
PIN-ON-DISC TRIBOMETER (CSM Instruments)

Lubrication: distilled water Temperature: 37 °C Duration: 24 hours Load: 5,23 N.

Ball (316L steel): 6 mm in radius

Circular track: 4 mm in radius


Sliding speed: 50 mm/s

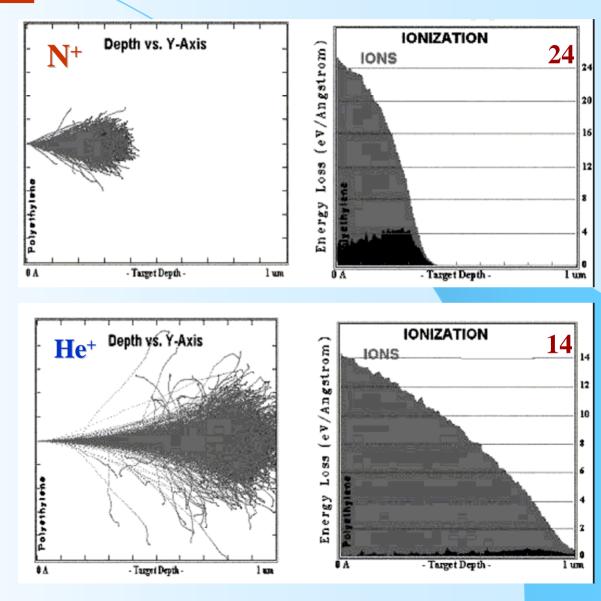

BEFORE (AS-IMPLANTED) AND AFTER AGING (120 °C/36h)

WEAR EVALUATION

Wear track area A_m Profilometer VEECO DEKTAK3 ST

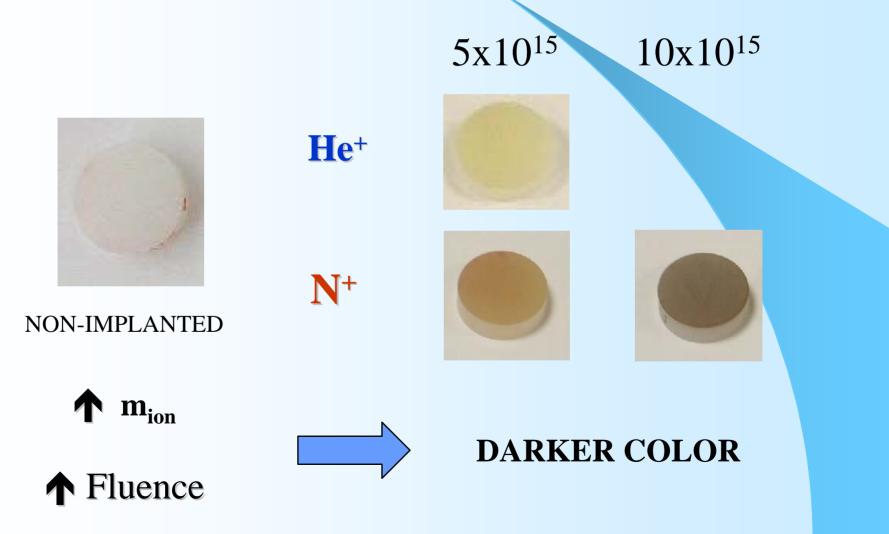
WEAR FACTOR

RESULTS

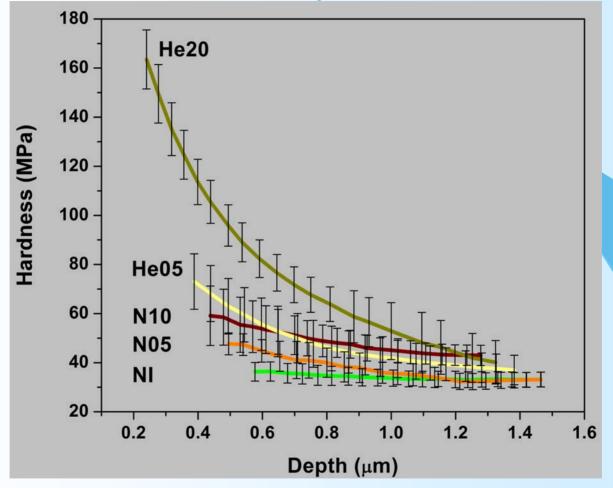

TRIM SIMULATIONS

N⁺ shallow penetration and less ionization

Greater scattering section High chemical reactivity

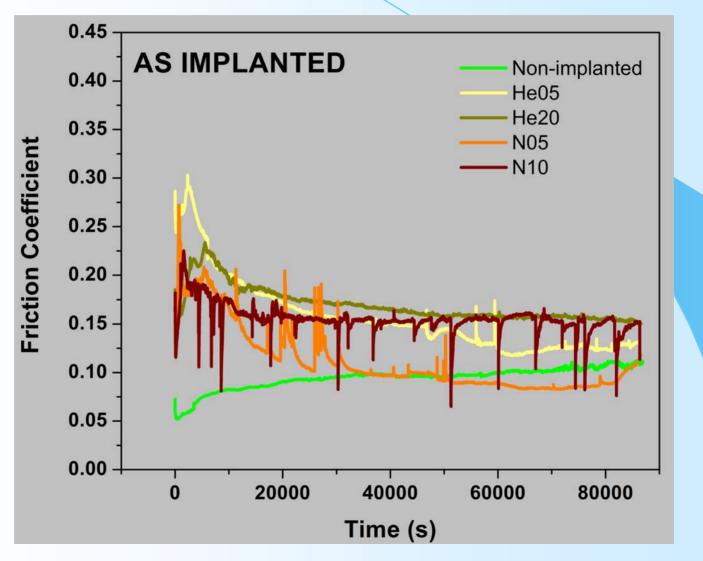

He⁺ higher penetration and ionization

Smaller scattering section Low chemical reactivity

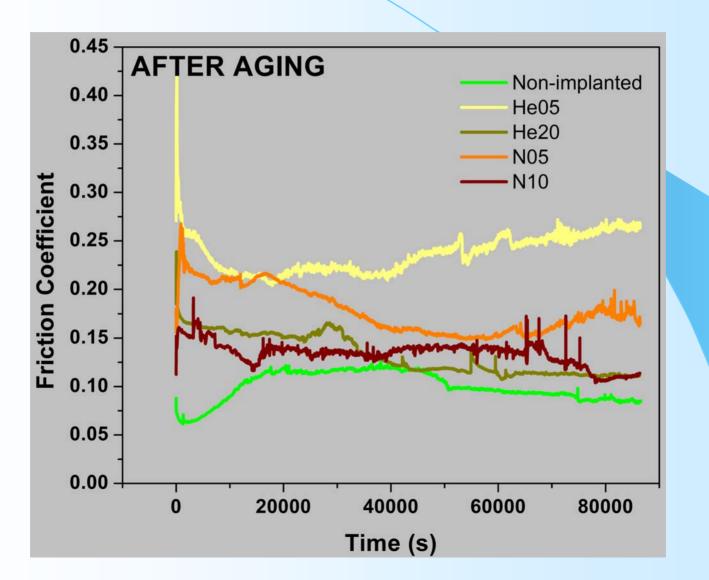

SURFACE MODIFICATIONS

Implanted surfaces changed to a yellowish/brownish color

SURFACE MODIFICATIONS


Increases in surface hardness and elastic modulus

Helium implantation provided higher hardness The higher the fluence, the harder the surface


FRICTION COEFFICIENT RESULTS

Ion implantation implied higher friction coefficients

FRICTION COEFFICIENT RESULTS

Friction coefficients were affected by accelerated aging

WEAR FACTOR RESULTS

$(10^{-6} \text{ mm}^3/\text{mN})$

Ion implantation slightly improves wear resistance

MATERIALS	AS IMPLANTED	AFTER AGING
NIMP	2.6 ± 0.1	21.1 ± 0.4
He05	3.4 ± 0.3	26.2 ± 2.3
He20	1.6 ± 0.0	3.1 ± 0.1
N05	2.1 ± 0.4	8.5 ± 0.8
N10	1.1 ± 0.1	11.9 ± 1.0

DISCUSSION

POTENTIAL EFFECTS OF ION IMPLANTATION

- Extensive bond breaking and atomic displacement
 - \checkmark Active free radicals, chain scission
- C-H bond breaking causes dehydrogenation
- New chemical bonds (C=C, etc.)
- **Surface crosslinking** (due to recombination of free radicals)
- Electronic stopping (He) vs. Nuclear stopping (N)

GRAPHITIZATION

DISCUSSION

- Ion implantation provoked changes in surface color and rose surface microhardness.
 - ✓ Massive surface crosslinking and graphitization
 - ✓ Hardening more prevalent for He⁺ (smaller scattering section and lower chemical reactivity)
- Ion implantation implied higher friction coefficients.
 - \checkmark Hard surfaces and roughening effect.
 - ✓ Accelerated aging may change water absorption properties and load bearing capability

DISCUSSION

- Ion implantation improved wear resistance of XPE materials.
 - ✓ Correlation between wear resistance and crosslinking.
 - ✓ Slightly lower wear factors for N⁺ (better bond strength)

- After severe oxidative challenge, implanted XPE (<u>He20</u>) exhibited better wear resistance than NI.
 - ✓ Implanted layer may work as a barrier to oxygen
 - ✓ Ion implantation may increase defects and oxygen concentration (N⁺ induced more free radicals)

- Ion implantation increases surface microhardness
- Unimplanted XPE has the lowest friction coefficient.
- Ion implantation enhances wear resistance of XPE, even after severe oxidation.

FUTURE RESEARCH

• Study of the influence of ion implantation on fatigue properties of highly crosslinked and remelted PE

• To extend the current study to highly crosslinked and annealed PE

• Wear testing under conditions similar to those in total hip replacements (bidirectional tests / calf serum)

ACKNOWLEDGEMENTS

RESEARCH FUNDED BY:

Comisión Interministerial de Ciencia y Tecnología (CICYT);

Project MAT 2003-02140