IN VIVO OXIDATION IN TKA COMPONENTS: A SPECTROSCOPIC AND NANOINDENTATION STUDY

Francisco J. Medel¹, Hina Patel¹, Alexis Cohen¹, Steven M. Kurtz^{1,2}

¹Drexel University; ²Exponent, Inc. Philadelphia, PA. USA

INTRODUCTION

 In vivo oxidation confirmed for traceable THA polyethylene components. This phenomenon may be more relevant in TKA.

• FTIR is commonly used to characterize oxidation in medical polyethylene.

 Raman spectroscopy and Nanoindentation provide microstructure and mechanical information, respectively.

OBJECTIVE AND HYPOTHESIS

Global

 Compare the utility of FTIR, Raman spc., and nanoindentation to characterize mechanical and microstructure changes due to in vivo oxidation of historical TKA polyethylene tibial inserts.

Secondary

 These techniques would allow us to detect regional differences in the physical, chemical, and mechanical properties

Knee Retrievals Information (n = 8)

- Processing route&resin:
 - Molded 1900H/Extruded GUR 415
- Implant designs:
 - Miller-Gallante I and II, Insall-Burstein II, AGC
- Gamma-air sterilization
- Average Shelf Life: 0.6 years (0.2-1.0 y)
- Average Implantation Time: 11.5 years (8.3-13.0 y)

Clinical information

- Gender: 6F/2M
- Age at revision: 54-84 years
- Diagnosis at revision:
 - Loosening, PE Wear, Instability, Failed Patella, Metallosis

- 200 mm thick sections:
 - Medial Condyle
 - Unloaded central spine
- Boiled in heptane for 6 hours
- Scanned at 0.1 mm increments
- Max OI (ASTM F2102-01)
- Max TVI (ASTM F2381)

- 200 mm thick sections:
 - Medial Condyle
 - Unloaded central spine
- Boiled in heptane for 6 hours
- Scanned at 0.1 mm increments
- Max OI (ASTM F2102-01)
- Max TVI (ASTM F2381)

- 200 mm thick sections:
 - Medial Condyle
 - Unloaded central spine
- Boiled in heptane for 6 hours
- Scanned at 0.1 mm increments
- Max OI (ASTM F2102-01)
- Max TVI (ASTM F2381)

- 200 mm thick sections:
 - Medial Condyle
 - Unloaded central spine
- Boiled in heptane for 6 hours
- Scanned at 0.1 mm increments
- Max OI (ASTM F2102-01)
- Max TVI (ASTM F2381)

- Method
 - Regions probed:
 - Surface, Subsurface and Bulk
 - Green laser line (514 nm) Initial power 25 mW
 - 1800 mm⁻¹ gratings. 2cm⁻¹ spectral resolution
 - Integration time (~ 420 s)
 - Properties measured
 - Orthorhombic Crystallinity
 - Amorphous fraction
 - Intermediate fraction
 - Overall Crystallinity

- Method
 - Regions probed:
 - Surface, Subsurface and Bulk
 - Green laser line (514 nm) Initial power 25 mW
 - 1800 mm⁻¹ gratings. 2cm⁻¹ spectral resolution
 - Integration time (~ 420 s)
 - Properties measured
 - Orthorhombic Crystallinity
 - Amorphous fraction
 - Intermediate fraction
 - Overall Crystallinity

$$\alpha_c = \frac{I_{1415}}{(I_{1295+1305+1269})x0.45}$$

- Method
 - Regions probed:
 - Surface, Subsurface and Bulk
 - Green laser line (514 nm) Initial power 25 mW
 - 1800 mm⁻¹ gratings. 2cm⁻¹ spectral resolution
 - Integration time (~ 420 s)
 - Properties measured
 - Orthorhombic Crystallinity
 - Amorphous fraction
 - Intermediate fraction
 - Overall Crystallinity

- Method
 - Regions probed:
 - Surface, Subsurface and Bulk
 - Green laser line (514 nm) Initial power 25 mW
 - 1800 mm⁻¹ gratings. 2cm⁻¹ spectral resolution
 - Integration time (~ 420 s)
 - Properties measured
 - Orthorhombic Crystallinity
 - Amorphous fraction
 - Intermediate fraction
 - Overall Crystallinity

$$\alpha_d = \frac{I_{1295}}{(I_{1295+1305+1269})}$$

- Method
 - Regions probed:
 - Surface, Subsurface and Bulk
 - Green laser line (514 nm) Initial power 25 mW
 - 1800 mm⁻¹ gratings. 2cm⁻¹ spectral resolution
 - Integration time (~ 420 s)
 - Properties measured
 - Orthorhombic Crystallinity
 - Amorphous fraction
 - Intermediate fraction
 - Overall Crystallinity

- Method
 - Regions probed:
 - Surface, Subsurface and Bulk
 - Green laser line (514 nm) Initial power 25 mW
 - 1800 mm⁻¹ gratings. 2cm⁻¹ spectral resolution
 - Integration time (~ 420 s)
 - Properties measured
 - Orthorhombic Crystallinity
 - Amorphous fraction
 - Intermediate fraction
 - Overall Crystallinity

 $\alpha_{b} = 1 - (\alpha_{c} + \alpha_{a})$

Nanoindentation

- Hemispherical tip (ø 13.5 μ m)
- Indentation depth 4.5 µm
- 0.2 mm steps
- Hardness (Oliver and Pharr method)
- Elastic Modulus (Sneddon equation)

$$H = \frac{L_{\max}}{A} = \frac{L_{\max}}{\pi (\frac{h_{\max} + h_r}{2}) \left[2R - (\frac{h_{\max} + h_r}{2})\right]}$$

Nanoindentation

- Hemispherical tip (ø 13.5 µm)
- Indentation depth 4.5 µm
- 0.2 mm steps
- Hardness (Oliver and Pharr method)
- Elastic Modulus (Sneddon equation)

$$E = \frac{(1 - v^2)\sqrt{\pi}}{2\sqrt{A}} \frac{dl}{dx} = \frac{(1 - v^2)\sqrt{\pi}}{2\sqrt{A}} \frac{2L_{\max}}{h_{\max} - h_r}$$

RESULTS OI, TVI and %C

- Property profiles showed **subsurface maxima** (~ 1 mm)
- Backside less degraded than the superior surface $(p \le 0.03^*)$
- Antero-posterior faces more degraded than bearing surfaces (p < 0.05*)

* Paired t-tests

RESULTS

Raman spectroscopy

- Subsurface extrema (~ 1 mm)
 - ✓ Orthorhombic crystallinity (α_c)
 - ✓ Overall crystallinity (α_d)
 - Amorphous content (α_a)
 - ✓ Intermediate fraction (α_b) (Anomalous)
- Phase fractions higher/lower at the superior surface $(p \le 0.04^*)$
- Higher %C and α_c in the antero-posterior faces (p < 0.03*)
- α_{c} and α_{d} higher than %C (†)

THREE PHASE MODEL

*Paired t-tests †Student t-test

RESULTS

Crystallinity contents

Property Region	% C	αc	α_{d}
M. Anterior	$0.64\pm0.17^*$	0.68 ± 0.16	0.73 ± 0.07
M. Condyle	0.55 ± 0.10	$0.74\pm0.14^{\dagger}$	$0.71\pm0.07^{\dagger}$
M. Posterior	$0.70\pm0.20^*$	$0.79\pm0.07^*$	0.74 ± 0.06
C. Anterior	0.62 ± 0.16	0.68 ± 0.16	0.73 ± 0.08
Ridge	0.55 ± 0.09	$0.67\pm0.14^{\dagger}$	$0.71\pm0.04^{\dagger}$
Post	0.53 ± 0.14	0.53 ± 0.08	0.71 ± 0.01
C. Posterior	0.59 ± 0.11	$0.69\pm0.09^{\dagger}$	$0.73\pm0.04^{\dagger}$

Antero-posterior faces: Higher %C and α_c (Paired t-tests; p < 0.03*)

 α_c and α_d higher than %C (Student t-test[†])

RESULTS Hardness and Modulus

- Harder and stiffer material: subsurface maxima (~ 1 mm)
- No significant differences between superior and inferior surfaces (p = 0. 3*)
- Lower hardness and modulus at the medial condyle $(p \le 0.02^*)$

* Paired t-tests

RESULTS Nanoindentation

Defective Indentations Normal Indentation 500 µm

RESULTS Nanoindentation

Mas

AN LAN

Normal Indentation

RESULTS Nanoindentation

DISCUSSION

• Historical TKA tibial inserts undergo oxidative, microstructural and mechanical degradation *in vivo:* access to body fluids is a key mechanism.

 FTIR and Raman spectroscopies confirm in vivo oxidation induces crystallinity changes

Qualitative estimations (dependence with density)
3-Phase model not valid for highly oxidized PE

• Nanoindentation confirms evolution to a harder and stiffer PE, in spite of the high sensitivity to surface defects.

ACKNOWLEDGEMENTS

• Supported by National Institutes of Health (NIH Grant R01 AR47904)

• Assistance of Zhorro Nikolov (Director at Drexel University Materials Characterization Facility) and Sandip Basu is highly appreciated.