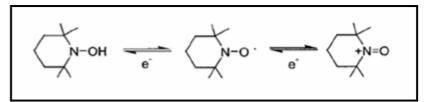


Nitroxides as Free Radical Scavengers in UHMWPE

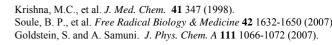
¹Marina K. Chumakov, ¹Alicia Zack, ²Joseph Silverman, ²Mohamad Al-Sheikhly

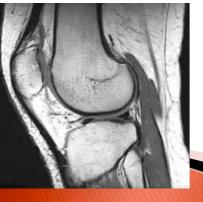
¹Fischell Department of Bioengineering, ²Department of Materials Science & Engineering University of Maryland, College Park, MD 20742 U.S.A.

Outline


- Nitroxides
 - Objectives: investigate radical reactions, while using a lower infiltration temperature
 - Clinical applications
 - Possible reaction mechanisms
- Infiltration Prior to Irradiation
 - Radical interaction with dose
- Post-irradiation Infiltration
 - Residual Nitroxide Concentration
- Future Work

Nitroxides, a class of antioxidants




- ▶ Electron transfer mechanism
- Long radical lifetime, stable
- MRI contrast agent
- Spin labeling reagents, EPR probes
- Polymerization
 - Nitroxide Mediated Radical Polymerization (NMRP)
- Radioprotectants in vivo
 - Reactive oxygen species: O₂-, H₂O₂
 - C-centered radical trapping
 - Lipid peroxidation prevention
- Induces apoptosis in hypoxic cancer cells
- Infiltration through solution or thermal treatment

2,2,6,6-Tetramethylpiperidine-1-oxyl (TEMPO)

4-Hydroxy-2,2,6,6-Tetramethylpiperidine-1-oxyl (TEMPOL)

Proposed Mechanisms of Oxidative Degradation Protection

Free Radicals Produced in UHMWPE

$$\sim$$
 -CH₂-CH₂-

R· Alkyl

$$R \cdot +O_2 \longrightarrow RO_2 \cdot$$

RO₂· Peroxyl

Allyl

$$ROOH \rightarrow RO \cdot + OH$$

Alkoxyl

Nitroxides-

TEMPO

(2,2,6,6-Tetramethylpiperidine-1-oxyl)

TEMPOL

(4-Hydroxy-TEMPO)

$$N-0$$
. = >NO.

Addition

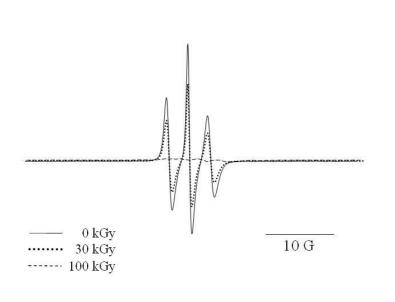
 $R \cdot + > NO \cdot \rightarrow > NOR$

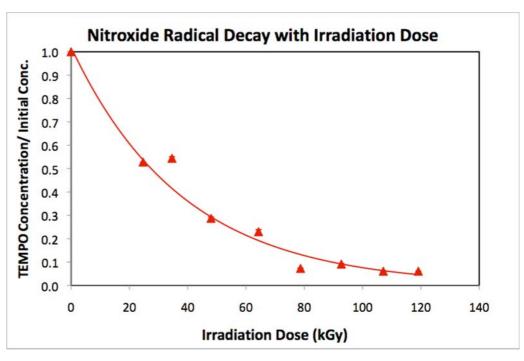
Electron Transfer Mechanism

 RO_2 · +>NO· \leftrightarrow intermediate \rightarrow >N⁺=O + RO_2 -

Hydrogen Transfer Mechanism

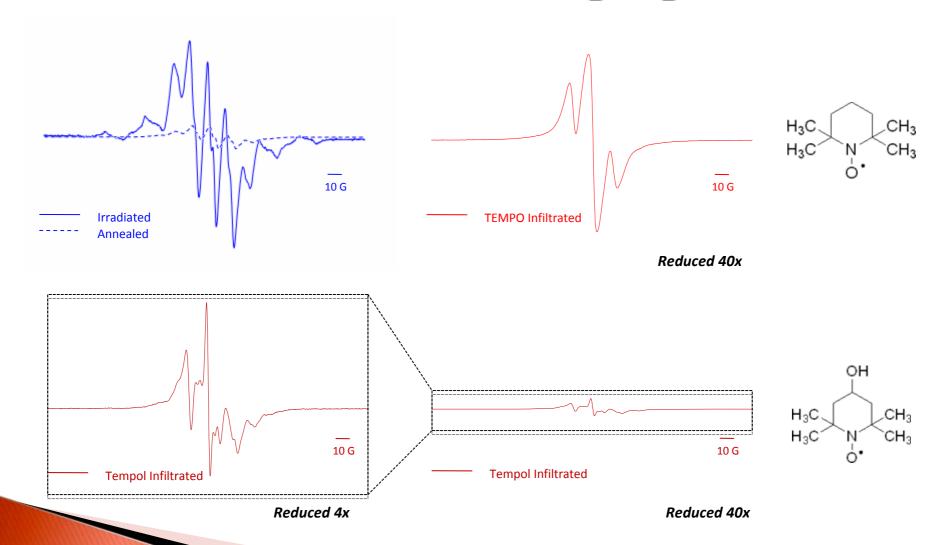
$$R \cdot + > NOH \rightarrow > NO \cdot + RH$$


$$RO \cdot + > NOH \rightarrow > NO \cdot + ROH$$

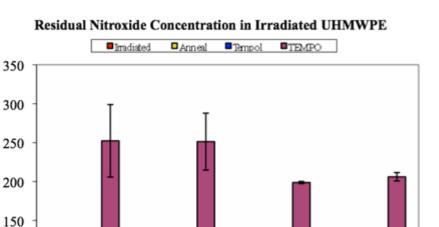

$$RO_2$$
· +>NOH \rightarrow ROOH +>NO·

Krishna, M.C., et al. *J. Med. Chem.* 41 347 (1998).
Soule, B. P., et al. *Free Radical Biology & Medicine* 42 1632-1650 (2007).
Goldstein, S. and A. Samuni. *J. Phys. Chem.* A 111 1066-1072 (2007).

Infiltration Prior to Irradiation

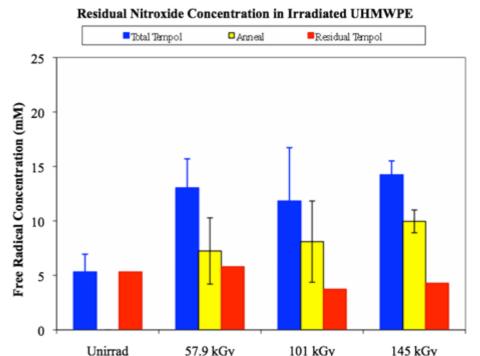


- UHMWPE Infiltrated with TEMPO
- Carbon-centered free radicals formed in UHMWPE interact with TEMPO, reducing its paramagnetic concentration



Post-Irradiation Scavenging

Residual Nitroxide Concentration


Free Radical Concentration (mM)

100

50

0

Unirrad

• 5 minutes 80°C annealing and infiltration

101 kGy

57.9 kGy

• <u>Tempol</u> "resistant" to penetration, requires higher temperatures

145 kGv

• Infiltration at lower temperatures→ safe concentrations, maintained properties

Conclusions and Future Questions...

- Nitroxide infiltration is a useful method of investigating reactions of carbon-centered free radicals
- Post-irradiation controlled diffusion of nitroxides may provide for optimal concentration in a practical process
- Spectral subtractions & simulations to resolve remaining carbon-centered radical concentration
- Cross-link density
- Oxidative stability
- Diffusion analysis
- Pin-on-disk wear testing

Thank you for your attention!

• Questions?

Toxicity of Nitroxide Compounds

- Paradox: cytoprotective & cytotoxic in different cell types
 - Sensitize hypoxic cells to radiation (cancer cells)
 - Super oxide dismutase mimics (prevent oxidative damage in some cells)
- Higher toxicity tendency for lipophilic compounds
 - Tempol 200x more hydrophilic than Tempol
- TEMPO: $IC_{50} = 0.72 \pm 0.05$ mM in endothelial cells
- Neurophysiological toxicity
 - 1 mM Tempol minimal effect
 - ∘ 1 5 mM TEMPO significant neurophysiological effect

Table 1. Antiproliferative Effect of TEMPOL on Different Human and Rodent Neoplastic and Nonneoplastic Cell Lines

Cell Line	Tumorigenic Potential	MDR Phenotype	$IC_{50} \pm SE \text{ (mM)}$
Breast			
HBL-100	_	_	0.944 ± 0.082
MCF-7/WT	+	_	$0.208 \pm 0.023*$
MCF-7/ADRR	+	+	$0.410 \pm 0.048*$
MDA-MB-231	+	_	$0.464 \pm 0.063*$
Colon			
LoVo/WT	+	_	0.499 ± 0.039
LoVo/DX	+	+	0.303 ± 0.059
HCT 116	+	_	0.380 ± 0.060
Liver			
BRL-3A	_	_	1.073 ± 0.070
MH1-C1	+	_	$0.773 \pm 0.038^{\dagger}$
Ovary			
CHO-K1	_	_	0.891 ± 0.227
NIH: OVCAR-3	+	_	$0.222 \pm 0.020^{\ddagger}$

Mean ± SE of four to six experiments.

Statistically significant differences were assessed by the analysis of variance, followed by Duncan's test for multiple comparisons.

Gariboldi, M.B. et al. Free Rad. Biol. & Med. 24 (6) 913 (1998).

Exploit hydrophilicity of Tempol: low toxicity and controlled infiltration

^{*} p < 0.05 vs. HBL-100.

 $p^{\dagger} = 0.05 \text{ vs. BRL-3A.}$

 $^{^{\}ddagger} p < 0.05 \text{ vs. CHO-K1}.$