

MWNT's acting like free radical scavengers in gamma irradiated UHMWPE/multiwall carbon nanotubes nanocomposites

María José Martínez Morlanes

Dept. Materials Science and Technology University of Zaragoza, Spain

5TH UHMWPE INTERNATIONAL MEETING Philadelphia, 22-23 September 2011 The paradigm of UHMWPE : wear, oxidation and mechanical properties

Enrique Gómez-Barrena et al. Acta Orthopaedica 2008;79(6):832

HIGHLY CROSS-LINKED UHMWPE

First generation: Highly crosslinked UHMWPEs and thermal stabilized

Remelting : Oxidative resistance 🗸

Susceptible to fatigue cracking X

Annealing: Mechanical properties 🗸

Susceptible to *in vivo* oxidation X

Second generation:

Sequential irradiation and annealing process:

Addition of vitamin E:

ALTERNATIVE: UHMWPE/MWCNTs COMPOSITES

TOPICS:

Improvement of mechanical properties Previous Thermal stability Biocompatibility Free radical scavengers??

PREVIOUS RESULTS

Mechanical properties

M.J. Martínez et al. Comp. Sci. and Tech. 2011;71:282

PREVIOUS RESULTS

Thermal stability

MWCNTs increase the temperature of maximum rate of thermal degradation of UHMWPE

OBJETIVES

MWCNTs ——> Free radical scavenger ??

* Ability of MWCNTs to act as free radical scavengers

* To prove the oxidative stability of UHMWPE with the incorporation of MWCNTs

* Effects of MWCNTs on the crosslinking density of UHMWPE

RAW MATERIALS

• UHMWPE powder

• Multiwall nanotubes (MWNTs)

SYNTHESIS OF THE COMPOSITES

A) Mixing process

B) Thermo-compressed process

T = 175°C 5 min of preheating p = 10 MPa t = 15 minutes Cooling in air under pressure

DISPERSION

• **TEM**

Conductivity

Low percolation threshold (~ 0.5wt%) GOOD DISPERSION

RAMAN

FREE RADICAL SCAVENGER

• ESR

As the MWCNTs concentration increases, the total free radical concentration formed by irradiation decrease

OXIDATIVE STABILITY

Material	% OI Increase	
PE-I	66	
PE-CNT(0.5%)-I	5	

Aging: 36 h 120°C

The results corfirm the antioxidant activity of the MWCNTs in preventing the oxidation of UHMWPE

TRANS-VINYLEN INDEX

The MWCNTs do not affect to the trans-vinylene index of UHMWPE after irradiation

CROSSLINKING DENSITY

Swelling measurements

	Swell Ratio	Extract	Gel content	Crosslinked Density
Material		[%]	[%]	[mol/dm ³]
PE-I	4.6 ± 0.3	15.5 ± 0.3	84.5 ± 0.3	0.08 ± 0.01
(PE-CNT(3%))-I	5.1 ± 0.5	14.9 ± 0.5	85.1 ± 0.5	0.07 ± 0.01

Explanation: Changes produced in the CNT structure by irradiation process can involve the CNT interacting simultaneosly with different polymer chains providing a network additional to the crosslinking.

CNTs contribute positively to the crosslinking density during the irradiation

SUMMARY

○ Electrical conductivity of nanocomposites shows a low percolation threshold (0.5%wt) \longrightarrow Good dispersion of MWCNTs throughout the polymeric matrix.

○ The amount of radicals introduced by the gamma-irradiation in UHMWPE decrease as the CNT concentration increase

the MWCNTs behave as free radical scavenger.

○ The presence of the CNTs increases the oxidative stability of the irradiated UHMWPE after aging.

○ The incorporation of MWCNTs does not affect to the crosslink density of UHMWPE during gamma irradiation.

Good wear resistance

• COLABORATION:

José Antonio Puértolas
 M^a José Martínez-Morlanes
 Biomaterial Group
 Universidad de Zaragoza

- M^a Teresa Martínez - Pere Castell Institute of Carboquímica CSIC

-P.J. Alonso ——> Material Science Institute of Aragon ICMA

THANK YOU FOR YOUR ATTENTION!!

ANY QUESTION??