Aggressive Aging of Cyclically Loaded Lipid-Doped UHMWPE

Zachary B. Konsin, B.S. Harris Orthopaedic Laboratory, Mass General Hospital

Orhun K. Muratoglu, Ph.D. Co- Director Harris Orthopaedic Laboratory, Mass General Hospital

Keith K. Wannomae, B.S. Harris Orthopaedic Laboratory, Mass General Hospital

Disclosure

These studies were funded through laboratory funds as well as through institutional support from Biomet Inc.

One of the co-authors has received royalties from Biomet, Inc., Zimmer, Inc., Aston Medical, Iconacy, Corin, Renovis, ConforMIS; and is an unpaid consultant for Biomet, Inc.

Explant Study

Irradiated and melted explants oxidized ex vivo

Oxidative stability reduced *in vivo*

Potential causes

- Lipid induced
- Cyclic loading

Aging Induced by Squalene

10/4/11

Aging Induced by Cyclic Loading – Conventional PE

Aging Induced by Cyclic Loading – Vit E Diffused, Irradiated PE

Purpose

Investigate the oxidative stability of squalenedoped UHMWPE subjected to cyclic loading

- Vitamin E Diffused, Irradiated
- Irradiated and Melted

Materials and Methods

E-PE: 100 kGy irradiated GUR1050, vitamin E diffused and homogenized, terminally gamma sterilized **CISM-100:** 100 kGy irradiated GUR1050, subsequently melted

Groups:

- 1) Lipid-Doped E-PE
- 2) Lipid-Doped CISM-100
- 3) Non-Doped CISM-100

Materials and Methods Squalene Doping

Goal: match the squalene absorption of E-PE to that of CISM-100 doped for 4 hrs

- Doping Temperature: 55°C
- Initial experiments determined E-PE doping time
- Gravimetric Doping Results

CISM-100: $16 \pm 0.5 \text{ mg} (4.0 \text{ hrs})$

E-PE: $19 \pm 1 \,\text{mg}$ (7.1 hrs)

Materials and Methods Parameters

- Environment: 80°C in Air
- Cyclic Load:
 - Alternating Stress: 10 Mpa
 - Frequency: 0.5 Hz
 - -5 weeks $(1.5 \times 10^6 \text{ cycles})$

Materials and Methods Alternating Stress

Assuming a case of pure bending, the load required to produce the tensile/compressive stresses are given by:

$$P = \frac{Sbd^2}{6L}$$

Where:

P = load to be applied to the specimen

S = desired alternating stress

b = specimen test width (20.6 mm)

d = specimen thickness (6.5 mm)

L = test span (31.8 mm).

Demonstration Video

Materials and Methods Analysis

OR

5 Weeks (1.5x10⁶ Cycles)

FTIR for Oxidation (ASTM F2102)

Results Survivorship

Survival: completion of 1.5x10⁶ cycles of testing

	Samples	Failed	Survivorship	Nf (10 ⁶ cycles)
Lipid-Doped E-PE	4	0	100%	N/A
Lipid-Doped CISM-100	4	4	0%	0.76 ± .09
Non-Doped CISM-100	4	2	50%	1.39

Results Survivorship

Survival: completion of 1.5x10⁶ cycles of testing

	Samples	Failed	Survivorship	Nf (10 ⁶ cycles)
Lipid-Doped E-PE	4	0	100%	N/A
Lipid-Doped CISM-100	4	4	0%	0.76 ± .09
Non-Doped CISM-100	4	2	50%	1.39

Results Oxidation Profiles – Loaded Samples

Results Oxidation Profiles – Loaded Samples

Results

Oxidation Pockets in Non-Doped CISM-100

Non-Doped CISM-100 Thin-Film

Average Testing Duration: 4.6 weeks

Slight inhomogeneities

Concentrated oxidation pockets

Results Lipid-Doped CISM-100 Comparison

Average Testing Duration: 2.5 weeks

Pro-oxidant Squalene affected a more wide-spread sub-surface oxidation

Samples failed before concentrated oxidation pockets could form

Results Oxidation Profiles – Unloaded Controls

*Unloaded Controls exposed to 80°C as long as Loaded Samples

Results Average Maximum Oxidation Index

Discussion

- Aggressive aging of Cyclically Loaded, Lipid-Doped UHMWPE lacks clinical relevance
- More comprehensive than standard accelerated aging tests
 - Lipids
 - Cyclic-Load
- Long term clinical studies needed for validation

Future Work

- Match the lipid profile to explants
- Dope components with a clinically relevant blend of lipids found in vivo
- Currently conducting a parametric study to determine the effect of:
 - Stress
 - Frequency
 - Temperature

Conclusion

- CISM-100 oxidized and failed
 - -Squalene \rightarrow Oxidation
 - Cyclic Load → Oxidation
 - —Squalene + Cyclic Load → Enhanced Oxidation
- E-PE survived and did not oxidize

Vitamin E actively protects against oxidation induced by squalene and cyclic loading

