

Peak Stress Intensity Factor Governs Crack Propagation in Crosslinked UHMWPE

P. Abhiram Sirimamilla (1), Jevan Furmanski (2), Clare M Rimnac (1)

1. Musculoskeletal Mechanics and Materials Lab,

Mechanical and Aerospace Engineering Department, Case Western Reserve University, Cleveland, Ohio,

2. Structure-Property Relations Group, Los Alamos National Laboratory, Los Alamos, New Mexico.

Disclosures and Acknowledgements

- NIH/NIAMS T32 AR00750 (JF)
- NIH/NIAMS R01AR047192 (CMR)
- Orthoplastics Ltd, Lancashire, UK
- Wilbert J. Austin Chair (CMR)
- Jay Bensusan M.S.(Experimental Assistance)

I have no potential conflicts with this presentation.

supported by the

Introduction

 Failure as a result of crack propagation observed in recent studies of crosslinked UHMWPE acetabular components

Failure analysis of UHMWPE Components

- Defect tolerant approach
 - Accepts that cracks/flaws may be present in the structure
 - Crosslinking reduces fatigue crack propagation resistance

Baker et al., J. Biomed. Mat. Res. 66A 1:146-154

Medel el al., J. Biomed Mat Res 83B 2(2007)380-390

Fatigue Crack Propagation Analysis

- Defect tolerant approach utilizes LEFM
- P.C. Paris: Fatigue crack growth is driven by the range of stress intensity applied

 $\frac{da}{dN} = C\Delta K^m$ C, m: Function of intrinsic and extrinsic factors

Crack Growth Under Static or Creep Mode

• Peak stress intensity relationship

$$\frac{da}{dt} = YK_{\max}^{n}$$

- Analogous to Paris relationship
- Velocity of crack propagation is related to applied peak stress intensity rather than the range of stress intensity ΔK

Crack Growth Under Static or Creep Mode

- Fatigue damage vs damage as a result of peak stress in a cycle
 - Studied for HDPE and LDPE
 - Studies found that crack growth rate was driven by the duration of maximum load applied rather than the cyclic loading for HDPE and LDPE

Dumpleton et al., Int J Fatigue 3(1987) 151-158

Zhou and Brown., J Material Science 30(1995) 6065-6069

 Studies found that resins have varying resistance to fracture for cyclic and static loading conditions

Static crack growth: Un-crosslinked UHMWPE

• Velocity of crack growth controlled by applied peak stress intensity factor in a cycle

Static crack growth: Un-crosslinked UHMWPE

Hypothesis

 The hypothesis of this study is that the crack propagation velocity of highly crosslinked UHMWPE is also driven by the peak stress intensity, K_{max}, during cyclic loading, rather than the stress intensity factor range, ΔK

Materials

- Two crosslinked UHMWPEs (Orthoplastics, Ltd)
 - Remelted 65 kGy
 - Remelted 100 kGy
- Ram extruded rod
- Stored in freezer
 - To minimize oxidation

[Kurtz SM et al., J Arthroplasty; 2003; 18 (7);68-78.]

Methods

- Round compact tension specimens

 w=40 mm, b=20 mm, a=17 mm,
 side grooves= 2mm
- Fatigue crack propagation tests conducted following ASTM E-647-11
 - -Instron servo-hydraulic test frame
 - Travelling microscope used to measure the crack growth____
 - 5 micron resolution

Travelling microscope

Cyclic Load

Test Design

• Four conditions designed to test the hypothesis:

-Square wave R=0.1, frequency f = 1 Hz (n=2)

- -Sine wave R=0.1, frequency f = 0.1 Hz (n=2)
- -Sine wave R=0.5, frequency f = 3 Hz (n=2)

-Sine wave R=0.1, frequency f = 5 Hz (n=2)

Test Design

- The conditions were selected to obtain data in different regions in the space of Paris relationship
- Different R-ratios were designed to get the material response for higher applied constant stress intensity
- Two different waveforms were implemented to demonstrate that the crack growth can be predicted by applying a scaling factor for different waveforms

Data Analysis

- da/dN versus ΔK
 - Two point method to calculate da/dN
 - $-\Delta K$ was calculated based on the applied load using the ASTM standard E-647-11
- da/dt versus K_{max}
 - The applied frequency was multiplied with the da/dN data to obtain the da/dt

Data Analysis

 Average velocity normalizing factor (Q) obtained

•
$$Q = \frac{\Delta a_{square}}{\Delta a_{sine}} = \frac{\int_{0}^{\lambda} (K_{(t)square})^{n} dt}{\int_{0}^{\lambda} (K_{(t)sine})^{n} dt}$$

 Data integrated from instantaneous load values obtained at 500 Hz through a LabView program

Results-Remelted 65 kGy

Results-Remelted 100 kGy

Results-Peak Stress Relationship

 Remelted 65 kGy – Peak stress governs crack growth

Results-Peak Stress Relationship

 Remelted 100 kGy – Peak stress governs crack growth

Results-Velocity Normalizing Factor

• Remelted 65 kGy

$$Q = \frac{\Delta a_{square}}{\Delta a_{sine}} = \frac{\int_{0}^{\lambda} (K_{(t)square})^{n} dt}{\int_{0}^{\lambda} (K_{(t)sine})^{n} dt} \approx 2.8$$

• Remelted 100 kGy

$$Q = \frac{\Delta a_{square}}{\Delta a_{sine}} = \frac{\int_{0}^{\lambda} (K_{(t)square})^{n} dt}{\int_{0}^{\lambda} (K_{(t)sine})^{n} dt} \approx 2.1$$

Results

 Constants from Paris relationship and Peak stress relationship

Testing Conditions	Remelted 65 kGy				Remelted 100 kGy			
	m	C(mm/cy)/ (MPa√m)	n	Y(mm/sec)/ (MPavm)	m	C(mm/cy)/ (MPa√m)	n	Y(mm/sec)/ (MPavm)
Square wave, f = 1 Hz, R =0.1	7.64	7.0x10 ⁻⁵	7.64	3.1x10 ⁻⁵	7.26	2.1x10 ⁻⁴	6.81	5.7x10 ⁻⁵
Sine wave, f = 0.1 Hz, R=0.1	6.00	2.8x10 ⁻⁴	5.95	1.6x10 ⁻⁵	5.22	6.4x10 ⁻⁴	5.44	3.8x10 ⁻⁵
Sine wave, f = 3 Hz, R=0.5	5.81	3.6x10 ⁻⁴	5.70	1.9x10 ⁻⁵	6.10	1.5x10 ⁻³	6.80	4.2x10 ⁻⁵
Sine wave, f = 5 Hz, R=0.1	7.35	1.3x10 ⁻⁵	7.35	3.0x10 ⁻⁵	5.31	5.4x10 ⁻⁵	5.31	1.6x10 ⁻⁴

 Both C and Y constants suggest that remelted 100 kGy is less resistant to crack propagation than remelted 65 kGy material

Discussion

- The hypothesis of the study is supported because the results suggest that for these two formulations of crosslinked UHMWPE, stable crack growth under cyclic loading is dependent on K_{max} and not ΔK
- This work is consistent with earlier work reported for non-crosslinked conventional UHMWPE material where it was found that crack growth was dependent on K_{max} and is governed by quasi-static driving forces
- The velocity scaling factor for square wave supports the theory that crack propagation is a time dependent phenomenon

J. Furmanski et al., Polymer 48(2007) 3512-3519.

Discussion

- Ductile fracture is associated with materials that exhibit crack propagation as a result of applied range of stress intensity ΔK
- Brittle fracture is associated with materials that exhibit crack propagation as a result of maximum applied stress intensity (K_{max})
- The results suggest that crosslinked UHMWPE should be treated as material failing in a brittle manner when it comes to fracture mechanics

Limitations

- Only two R-ratios were tested for the hypothesis, no negative R-ratios were tested or the effect of compressive loads were not studied
- Two crosslinked UHMWPE formulations were tested in the study, only remelted material was studied

Conclusion

 In the presence of a flaw or a design stress concentration region, the findings suggest that stable crack propagation can occur as a result of only static loading on UHMWPE joint replacement components. This should be taken into consideration while design of components.