

Evaluation of Oxidation in Virgin UHMWPE Knee Components after Retrieval and Shelf Aging

Mark Morrison Research Smith & Nephew Orthopaedics Memphis, TN USA

> smith&nephew

Introduction

- Recent reports of oxidation in highly crosslinked, re-melted UHMWPE
- Surprising for two reasons:
 - Undetectable level of free radicals
 - Excellent in-vitro oxidation resistance
- Virgin, EtO-sterilized poly uniquely represents a similar material
 - Undetectable level of free radicals
 - Excellent in-vitro oxidation resistance
 - Longer clinical history

Introduction

- Previous studies of virgin UHMWPE
 - Costa et al., Biomaterials, 1998;19:1371.
 - Knee (n=1) and hip (n=10) components
 - No oxidation reported
 - Bracco et al., JBJS-B, 2009;91:274.
 - "Large number" of components over 15 years
 - No oxidation reported
 - Currier et al., JBJS-A, 2010;92:2409
 - Hip component (n=1, 8.2 years in vivo, 0.3 years shelf aging)
 - No oxidation
 - MacDonald et al., CORR, 2011;469:2278.
 - Hip components (n=24, 1.4 12.8 years in vivo, 0.1 11.3 years shelf aging)
 - "EtO sterilized liners showed undetectable oxidation..."
- Lack of well-defined studies of virgin knee components

Objectives

- Characterize distribution and amounts of lipids
- Characterize oxidation behavior of virgin, EtO-sterilized tibial inserts
 - Where is oxidation located?
 - When did oxidation occur?

State smith&nephew

Materials

Twelve knee retrievals

• Virgin, EtO-sterilized UHMWPE

Component	Material	In-Vivo Time (years)	Ex-Vivo Time (year)
TI-1	GUR1050 RE	0.4	14
TI-2	GUR1050 RE	0.8	9.1
TI-3	GUR1050 RE	0.5	8.3
TI-4	GUR1050 RE	2.6	8.2
TI-5	GUR1050 RE	0.8	8.5
TI-6	GUR1050 RE	5.5	8.2
TI-7	GUR1020 CM	2.8	3.4
TI-8	GUR1050 RE	0.3	3.3
TI-9	GUR1020 CM	3.5	3.3
TI-10	GUR1020 CM	1.2	3.2
TI-11	GUR1020 CM	0.1	3.1
TI-12	GUR1020 CM	0.6	3.1
Mean (± SD)		1.6 ± 1.7	6.3 ± 3.6

> smith&nephew

Experimental Methods

- One sample removed from each of two regions:
 - Bearing region
 - Non-bearing region
- Thin films (~200 $\mu m)$ produced with microtome
- Transmission FTIR
 - Three profiles per film
 - 200 × 200 μm aperture
- Extraction in boiling hexanes for 16 hr

Derived FTIR Metrics

Peak-Area Oxidation Index = PA-OI = $\frac{A_{1718}}{A_{1396-1330}}$

(ASTM F2102-06)

Peak-Height Oxidation Index = PH-OI $= \frac{H_{1718}}{H_{1368}}$

<u>Baselines and integration limits</u> Adjusted to fit peak in numerator Always 1396-1330 cm⁻¹ in denominator

Experimental Methods

Pre-Extraction

Pre-Extraction Spectra

Ester Indices in Shelf-Aged Condition

Bearing Region

Ester Indices in Shelf-Aged Condition

Non-Bearing Region

> smith&nephew

Ester Penetration Rates

- Penetration depths correlated with:
 - Time
 - Region
 - Side
- Diffusion increases penetration depth with time
- Mechanical loading pushes esters into component
- Availability of synovial fluid affects quantities

Post-Extraction

Ester Indices After Extraction

- Els reduced by 43-97%
- Ester peaks did not disappear in all profiles

Ester Indices After Extraction

- Els reduced by 43-97%
- Ester peaks did not disappear in all profiles

Post-Extraction Spectra

- Significant ester peaks remained in spectra
- Is extraction complete?

Ester Peak Formation

- Few studies in the literature
 - Directly quantified esters
 - Published spectra
- Accelerated aging studies without mechanical loading and lipids (i.e., oxygen bomb)
 - Ester peaks / shoulders
 - Small compared to ketone peak

$$\frac{PH - OI}{EI} = \frac{H_{1718}}{H_{1738}} = 6.1 - 6.6$$

Gamma-Inert

PH-OI / EI ≈ 6.5

Post-Extraction Spectra

Extraction for 32 Hours

- Representative sample selected for extraction for an additional 16 hours
- FTIR metrics measured again and compared

Peak-Area Oxidation Indices After

Bearing Region

Peak-Area Oxidation Indices After

Non-Bearing Region

Correlation Analyses

Shift smith&nephew

Limitations

- Small number of samples
- Short in-vivo times
- Long shelf-aging times

>{ smith&nephew

Conclusions

- Esters present on all surfaces
- Content and depth dependent upon
 - In-vivo time
 - Mechanical loading
 - Exposure to synovial fluid
- Large, residual ester peaks observed in bearing regions
- Low levels of oxidation observed in 10 of 12 tibial inserts
 - Concentrated at bearing surfaces
 - Present on distal sides within bearing region
 - Little measurable oxidation in non-bearing regions
- Oxidation likely occurred during shelf-aging