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ABSTRACT 

Total disc replacement (TDR) was clinically introduced as an alternative to 

spinal fusion to relieve back pain, maintain mobility of the spine and eliminate the 

adverse side effects of fusion. More recently, gamma-inert-sterilized ultra-high 

molecular weight polyethylene (UHMWPE) TDR cores were introduced to replace 

historical gamma-air-sterilized cores in an effort to reduce UHMWPE wear debris and 

inflammation. In this study, both implant and periprosthetic tissue retrievals from 

patients with gamma-inert-sterilized TDRs were evaluated for in vivo performance 

and biological responses, respectively. As pain was the primary revision reason for 

all patients, the contributions of implant-related damage and tissue responses to the 

development of pain were also a focus of this investigation. 

After analyzing implants and tissues for 11 TDR patients, detectable UHMWPE 

wear debris was identified with corresponding macrophage infiltration in six patients 

with associated implant damage. Neither damage nor TDR bearing design, fixed vs 

mobile, influenced the amount, size and shape characteristics of wear particles. 

However, comparisons to a retrieval study of historical devices indicated that the 

number of UHMWPE particles generated from gamma-inert-sterilized devices were 

decreased by 99% (p=0.003) and were 50% rounder (p=0.003), confirming the 

improved wear resistance of the newer devices. Accordingly, periprosthetic tissue 

reactions were also substantially reduced. 

Prospective immunohistochemical investigations for these devices showed, 

for the first time, that UHMWPE wear-debris induced tissue reactions in the human 
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lumbar spine can be linked to inflammation. First, inflammatory factors were 

elevated in TDR periprosthetic tissues (n=30) when compared to disc degenerative 

disease (DDD) patient tissues (n=3) from primary surgery and disc tissues (n=4) from 

normal autopsy patients with no history of lower back pain. The mean percent area 

of production for vascular endothelial growth factor (VEGF) (p=0.04), interleukin-

1beta (IL-1β), (p=0.01) and substance P (p=0.01) were significantly higher in TDR 

tissues when compared to tissues obtained from DDD patients. Although platelet 

derived growth factor-bb (PDGFbb) p=0.14), tumor necrosis factor-alpha (TNFα) 

(p=0.06) and nerve growth factor (NGF) (p=0.19) were also increased in the TDR 

patient tissues, these increases were not significant. Compared to normal disc tissues, 

the mean percent area for all six factors was statistically increased in TDR tissues (at 

least p<0.05). Interestingly, no statistical differences were observed between DDD 

and normal disc tissues. Next, our studies showed that TNFα, IL-1ß, VEGF, NGF and 

substance P strongly correlated with the number of wear particles and also the 

number of macrophages for the TDR patient group (at least p<0.05 for all). Finally, 

the pro-inflammatory/pain factors, TNFα and IL-1ß, and the vascularization factors, 

VEGF and PDGFbb, significantly correlated with the presence of the neural 

innervation and hypersensitization agents, NGF and substance P (p<0.01 for all). 

These findings suggest not only the presence of inflammatory reactions, but the 

presence of factors that can directly and indirectly contribute to the pain sensitivity.  

In addition to wear-debris and subsequent inflammation, increased 

vascularization was another key histomorphological change observed in the TDR 

tissues that may be involved in the pathogenesis of particle disease.  In brief, the 
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ingrowth of blood vessels may be providing a conduit for nociceptive innervation. 

Studying vascularity in revision tissues showed the total number of blood vessels was 

significantly associated with TNFα, IL-1ß, VEGF, PDGFbb, NGF and substance P (at 

least p<0.05 for all), suggesting an interrelation between vascular changes and 

inflammatory-mediated responses. Furthermore, analysis at the local level revealed 

the innervation/pain factors, NGF and substance P, were predominantly localized to 

vascular channels, suggestive of nerve ingrowth and potential neural-maladaptive 

plasticity at periprosthetic sites. Lastly, comparing blood vessel number with factor 

expression and macrophage number in individual images obtained from tissue 

sections with low and high vascularity suggested a temporal link between TNFα, 

macrophages and angiogenesis. Taken together, elucidating the pathogenesis of 

inflammatory particle disease will provide information needed to identify potential 

therapeutic targets and treatment strategies to mitigate pain. 
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CHAPTER 1 

Introduction & Background 

1.1 Low Back Pain & Surgical Fusion 

Low back pain is reported to be the leading cause of disability worldwide 

according to the 2010 Global Burden of Disease Study [48]. It is also the leading 

cause of activity limitation and work absence, resulting in a heavy economic burden 

on individuals, communities and governments [2, 74]. Degenerative disc disease 

(DDD) is one pathology known to result in chronic back pain due to the 

biomechanical instability caused by loss of disc height, disc dehydration and/or 

annular tears [18, 24, 82]. When conservative treatments such as pain medications 

and physical therapy fail, discectomy or surgical fusion are implemented to mitigate 

pain for patients with DDD. The number of spinal fusions performed each year is 

continually increasing [14], with an estimated 380,000 thoracolumbar fusions 

performed in 2013 according to the 2013 Spinal Surgery Update by the Millennium 

Research Group. However, the clinical success rate of lumbar fusion is variable 

ranging from 16-95%, as long-term results are poor due to increased risk of 

complications [7, 18, 80]. One noteworthy and common complication is adjacent 

segment disease (ASD) [23, 54].  ASD is the associated degeneration of adjacent 

intervertebral discs (IVDs) due to abnormal loading and increased mobility of IVDs 
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above or below the fused degenerated disc. Definitive treatment for this 

complication is a topic of continuing research, but disc replacement has been 

regarded as a potential solution [87]. 

1.2 Total Disc Replacement: An Alternative Treatment for DDD? 

Following the encouraging short term results of Fernstrom implantation of a 

steel ball in place of an IVD in the 1960s [15], total disc replacement (TDR) was 

conceived as an alternative to spinal fusion and its resulting complications. TDR 

involves the removal of a damaged or degenerating IVD and replacement with an 

artificial device. In theory, implantation of a mobile and potentially shock-absorbing 

component to replace a degenerating disc will not only restore disc height and 

alleviate pain, but also preserve spinal segmental motion and transmit/absorb load 

between vertebral bodies. In contrast to fusion, this preservation of mobility has 

been speculated to prevent ASD since excess strain at adjacent vertebral levels is 

theoretically diminished [18, 46]. In addition, other complications that may arise 

from fusion such as the morbidity associated with bone graft harvest, stiffening of 

the lumbar spine, sagittal balance misalignment, and nonunion are all avoided with 

disc arthroplasty [33, 47, 62]. 

 Several studies have demonstrated clinical success of disc arthroplasty in 

comparison to fusion for short and mid-term results [46, 82, 93]. Despite this 

evidence, fusion is still regarded as the “gold standard” for surgical treatment of 

DDD, and only 24,579 cervical and lumbar disc replacements were performed in 

2013 (Millennium Research Group). Roughly 10 years have passed since TDRs were 
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approved by the Food and Drug Administration (FDA) for use in the US, but the 

excitement surrounding TDR technology has been tempered due to limited long-

term data, which is needed to convince insurance companies to cover the increased 

cost of this surgery. Thus, it is crucial to pin-point any long-term pitfalls of motion 

preservation surgery and understand successful features as well as failure modes of 

both contemporary and emerging designs of artificial discs to further improve the 

technology.    

1.3 The Historical CHARITÉ Disc Design & Early Retrieval Studies of 

Wear Debris 

While Fernstrom’s steel spheres and many early artificial disc designs 

receded from clinical use soon after their introduction, the CHARITÉ artificial disc 

design has been used extensively since its development in the 1980s, with few 

changes to design and biomaterials over the past 2 decades [34]. The SB CHARITÉ 

III was the third iteration of the original device that became commercialized in 1987 

by Waldemar Link GmbH & Co. The lumbar TDR (L-TDR) design adapted 

biomaterials and design principles based on successful total joint replacement (TJR) 

designs. The original L-TDR incorporated two cobalt-chromium (CoCr) metallic 

endplates that were fixed to the superior/inferior vertebrae, and articulated against 

a mobile polymer core made of ultra-high molecular weight polyethylene 

(UHMWPE), which was gamma-air-sterilized. The design features were iconic for 

“historical” metal-on-polyethylene (MOP) L-TDRs. The clinical performance of this 
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disc design was reported to result in good to excellent clinical outcomes based on 

the alleviation pain and preservation of motion (Figure 1-1) [13, 39, 46, 66].  

 
Figure 1-1. (A) Anterioposterior and (B) lateral radiographs of a successfully 

implanted CHARITÉ TDR in the lumbosacral spine. 

While MOP designs have proven to be relatively successful in TJR, UHMWPE 

prosthetic wear debris generation is a clinically relevant complication that can 

ultimately result in osteolysis and aseptic loosening [28, 29]. Wear debris 

generation and osteolysis were initially thought to be negligible in anterior column 

of the lumbar spine due to the decreased sliding distance in MOP TDRs compared to 

total hip and total knee arthroplasty [40, 41]. However, retrieval studies of 

original/historical TDRs with gamma-air-sterilized UHMWPE cores demonstrated 

wear of the UHMWPE core, along with three ra[72]re cases of osteolysis in the 

lumbar spine [37, 78, 85]. Additionally, both submicron (0.05-2.0 µm) and large 

UHMWPE wear particles (> 2.05 µm) were present in periprosthetic tissues from 

historical TDRs, and these particles were associated with a chronic innate 

inflammatory response [57, 58]. TDR wear particles had a size range that was 

similar to that observed in revision tissues from total knee replacements (TKRs), 

however the majority were smaller than 6 µm as seen in revision tissues from total 
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hip replacements (THRs) [57]. Furthermore, the extent of impingement of the 

implant positively correlated with increased submicron wear debris and 

biological/inflammatory activity of these particles [4]. Collectively, these studies 

and others have established the clinically relevant complication of UHMWPE core 

wear for the historical TDRs [36, 38, 56, 83, 84], which served as an impetus for 

improving TDR bearing surface materials and designs. 

1.4 The Modern TDR: ProDisc-L & the new CHARITÉ 

The growing field of artificial disc replacement includes a broad range of 

designs and a heterogeneous assortment of biomaterials, but the most commonly 

employed L-TDRs have relied on developing better MOP devices [86]. Modern MOP 

devices, such as the ProDisc-L and CHARITÉ (re-modeled in 2004), incorporate 

conventional polyethylene cores which are fabricated with gamma-inert-sterilized 

UHMWPE GUR 1020 resin, designed to improve oxidation resistance and thus 

enhance the wear performance of the cores. While both devices were approved by 

the FDA and in clinical use for several years, the CHARITÉ was discontinued in 2011 

as their manufacturer, Synthes, was acquired by the ProDisc-L developer, DePuy. 

Today, the ProDisc-L remains as the only lumbar TDR in the present US market, 

however there is an extensive clinical history database for both devices as tens of 

thousands of people have received these devices. 
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Figure 1-2. (A) CHARITÉ mobile-bearing artificial disc; (B) ProDisc-L fixed-

bearing artificial disc. 

The biomaterials used in the fabrication of the ProDisc-L prosthesis are quite 

similar to the CHARITÉ, specifically a conventional UHMWPE core and two CoCr 

endplates, plasma-coated on the outside with titanium. However, unlike the mobile-

bearing CHARITÉ, the core of ProDisc-L is fixed via a locking mechanism into the 

inferior endplate, thus allowing relative motion only between the core and the 

superior endplate (Figure 1.2) [34]. To the author’s knowledge, no studies have 

evaluated implant wear or periprosthetic tissue reactions for contemporary MOP L-

TDRs. Additionally, it remains unclear whether TDR design will influence the 

generation of UHMWPE particles and the associated chronic inflammatory response.  

1.5 TDR Revision, Complications & Pain 

 TDR revision surgery can be a dangerous procedure due to the difficulty that 

is involved in retrieving the prosthesis that is adhered or in close proximity to great 

vessels and nerve plexus [82]. Nevertheless, revision cases are growing as TDRs are 

becoming more widely used. While TDR technology provides an alternative 

treatment approach to fusion, new operative techniques unfortunately mean new 

complications. However, many complications arising from TDRs that require 
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revision surgery result from iatrogenic causes such as inappropriate indications, 

poor implantation technique and malpositioning of the implant [5]. Implant 

subsidence into the vertebral body is a common problem that could potentially 

result from inadequate determination of preoperative bone quality as TDR 

contraindications include osteophenic/osteoporotic bones [26]. Other 

complications of poor implantation that result in revision surgeries include device 

migration, extrusion, or dislodgement that may ultimately result in spinal cord 

compression, causing nerve irritation or vascular impedance. A malpositioned 

prosthesis can cause foramenal narrowing and compromise the dorsal root ganglion 

or nerve root, thereby resulting in radiculopathy and excruciating pain. Adding to 

these complications, positional changes of the implant in vivo can also lead to wear 

debris generation from unintended contact between device components. 

 Pain is the primary reason for TDR revision, but iatrogenic damage is not 

always the cause. Periprosthetic wear debris generation in artificial disc 

replacement has recently emerged as a clinically relevant complication that may 

lead to a painful inflammatory response similar to what has been observed for some 

TJRs [20, 22]. Studies suggest there may be a functional link between the innate 

immune response, and neurological changes that ultimately result in the generation 

of peripheral pain [75, 94]. Specifically, activated macrophages have been reported 

to contribute to experimental pain states by releasing factors such as tumor necrosis 

factor-α (TNFα), interleukin-1β (IL-1β), IL-8, nerve growth factor (NGF), nitric oxide 

(NO) and prostanoids [43, 64, 76]. However, the role of wear-debris-induced 

inflammation and subsequent mediation of pain post-spinal arthroplasty remains 
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unknown. Thus, investigating wear debris and the resulting biological responses 

will be invaluable in understanding some of the underlying mechanisms of pain, 

which can then be targeted to preserve or extend the life-time of the implant. 

1.6 What We Know About Lumbar Pain from the Degenerative Disc 

 Much of what is known about the pathological states that can contribute to 

the mediation of pain in the lumbar spine is derived from the large body of research 

comparing the normal disc to degenerative states. The normal intervertebral disc is 

comprised of three regions that are morphologically distinct: the inner gelatinous 

nucleus pulposus (NP), the outer annulus fibrosis (AF) and cartilaginous endplates. 

While the adult human NP is completely avascular and aneural, a relatively low 

number of small blood vessels and nerve fibers are found in the very outer regions 

of the AF and endplates [11, 63, 67, 92]. The capillaries present in these regions 

provide nutrients to cells within the disc through diffusion-facilitated fluid transport 

that occurs from normal movements. During movement compressive loading causes 

water in the NP to extrude metabolic waste products from cells towards the blood 

vessels and the osmotic potential of the nucleus draws back nutrients into the inner 

disc. However, the distance between NP cells and the nearest blood vessel can be as 

much as 8 mm, resulting in a nutrient- and oxygen- poor environment [30, 81]; this 

hostile environment is reflected in significantly lower cell densities and metabolic 

activities than other cartilaginous tissues. The small existing body of NP cells 

regulate homeostatic turnover of the extracellular matrix and any imbalance in the 
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degradative/synthetic processes can contribute to loss of tissue integrity and 

degenerative conditions. 

Disc degeneration is characterized by not only the overall breakdown of the 

extracellular matrix, but also changes in resident cell number, phenotype and 

behavior. These changes can contribute to inflammatory-mediated discogenic pain 

(inflammatory changes in the disc that influence the nervous system by stimulation 

of nociceptors in the AF) and/or pain caused by the physical biomechanical 

instability of the spine leading to disc herniation and impingement of nerve roots [8, 

21, 91]. The loss of proteoglycans and overall breakdown of matrix is reflected in 

the poor reparative capacity of the disc. The breakdown of the matrix surrounding 

the cells ultimately results in inflammation, the replacement of NP with 

disorganized scar and granulated tissue [55]. The reparative effort of AF cells in 

response to matrix degeneration and tears/fissures also causes inflammation, 

scarring and promotes neovascularization [16, 17]. This process has been 

associated with an infiltration of inflammatory cells, as resident macrophages are 

not present [6, 17]. Koike and colleagues have found correlations that suggest 

progressive degeneration is accompanied by angiogenesis and that newly formed 

vessels play an important role as a passage for macrophages to enter the disc space 

[31]. Interestingly, an immunohistochemical study on human autopsy degenerative 

discs also showed the presence of CD68-positive (pan-macrophage marker) cells in 

the NP, and suggested these cells were transformed resident cells rather than 

invading monocytes [50]. While more substantiative evidence is necessary to 

determine whether the degenerative pathology enables a microenvironment 
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conducive to transdifferentiation of resident NP cells towards a macrophage-like 

phenotype, the presence of transformed cells or infiltrated inflammatory cells both 

have the potential to mediate pain.  

Inflammatory cells in the degenerated disc and AF secrete proinflammatory 

cytokines such as TNFα and IL-1ß that can directly and/or indirectly mediate pain 

sensitization [21, 53, 89, 91]. Both cytokines can directly exert algesic effects by 

binding to pain-associated receptors on the synapses of sensory neurons (which 

then respond by sending signals to the brain, initiating the perception of pain) [75, 

94]. These cytokines also have the potential to induce neural ingrowth into the disc 

and mediate hypersensitization by upregulating the expression of factors like NGF 

and substance P, both of which are also found to be upregulated or increased in the 

outer AF of degenerated disc [1, 21, 60]. Furthermore, TNFα and IL-1ß have been 

shown to induce blood vessel ingrowth by stimulating the release of factors like 

vascular endothelial growth factor (VEGF) [6, 79]. Activated fibroblasts and 

macrophages in close proximity to existing blood vessels can coordinate signals 

with endothelial cells (ECs) and other stromal cells to stimulate angiogenesis [10, 

27].    

Angiogenesis is a crucial component in the pain-associated pathogeneses of 

disc degeneration and herniation. An immunohistochemical study of 50 herniated 

discs showed 88% and 78% immunopositivity for the angiogenic growth factors, 

VEGF and platelet-derived growth factor (PDGFbb), respectively; both factors were 

predominantly observed in tissue capillaries, but also present in disc cells and 
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fibroblasts [77]. The presence of these factors in degenerated and herniated discs 

has been associated with neovascularization of the poorly vascular AF and avascular 

NP [6, 12]. This is a very noteworthy morphological change for two reasons. First, 

the newly formed blood vessels branch out to form a network of smaller vessels that 

provide a venue for monocyte infiltration into the disc tissue via post-capillary 

venules; this process can then induce further inflammation and vascularization in 

the disc space [31, 51]. Second, vascularization also contributes to pathological 

innervation into the disc space: blood vessels extend through the AF towards the 

degenerating NP and this process can be accompanied by ingrowing nerve fibers 

[16, 17]. On the basis that these nerve fibers originate from the dorsal root ganglia, 

they are nociceptive [3, 9, 19, 52]. Importantly, these nerve fibers can also become 

hypersensitized due the inflammatory conditions in the degenerated disc, thereby 

contributing to discogenic pain [19]. Gruber and colleagues (2012) proposed nerve 

ingrowth into the inner AF of degenerative discs encounter a proinflammatory 

cytokine-rich mileu that promotes hyperalgesia and exacerbates pain [21]. To 

complicate an already complex phenomenon in the degenerating disc, both ECs and 

nerve cells, in addition to inflammatory cells, produce proinflammatory cytokines, 

vascularization factors, neurotrophins or neuropeptides [51, 65, 70, 75, 91]. Taken 

together, inflammation and the vascularization/innervation process work in 

synergy to mediate discogenic pain. Although it is still not clear which comes first, 

both processes involve potential targets for therapeutic intervention to mitigate 

pain.  
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TDR is a surgical procedure that involves the removal of the degenerated disc 

in its entirety to alleviate back pain. Thus, in theory, the majority of the pathological 

disc is discarded, with the exception of outer-most portions of the AF. However, 

since the AF can be involved in the pathogenesis of discogenic pain, it raises the 

interesting question of how pain is developing in patients revised for TDRs. This 

present body of research aims to not only evaluate the wear performance of TDRs in 

patients that were originally indicated for DDD, but also study any overlaps in pain-

associated pathologies, since the primary reason for TDR revision surgery is pain.    

1.7 Overview of Thesis & Specific Aims 

This thesis presents extensive work reviewing artificial disc implant designs 

and biomaterials, followed by studying TDR retrievals, wear debris generation from 

these devices and the biological responses to the debris. The field of artificial disc 

replacement includes a broad range of designs as well as heterogeneous assortment 

of biomaterials for lumbar and cervical regions of the spine. Chapter 2 provides a 

systematic review evaluating the design and material factors that are associated 

with differences in clinical wear performance of lumbar and cerivical TDRs. The rest 

of the thesis details experimental research evaluating the wear performance and 

biocompatibility of lumbar TDRs comprised specifically of the 2-piece, metal-on-

polyethylene (MOP) design. Chapter 3 describes the retrieval analyses of 

contemporary MOP lumbar device components and periprosthetic tissue responses 

(see Aim I below). Chapter 4 investigates the immune responses to polyethylene 

wear particles and the involvement of inflammatory factors known to play both a 
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direct and indirect role in inflammatory-mediated pain (see Aim II below).  Chapter 5 

evaluates the relationship between inflammation, vascularization and innervation in 

the periprosthetic lumbar spine to elucidate the wear-debris-induced pathogenesis 

based on localized tissue/cellular responses (see Aim III below). Chapter 6 provides 

more information on the biological responses that led to the rare case of osteolysis 

noted in two TDR revision patients. Lastly, Chapter 7 summarizes the findings from 

the above body of research, along with implications of this work and future 

directions.  

1.7.1 Aim I: Retrieval Analyses of Contemporary MOP L-TDR Device 

Components & Periprosthetic Tissue Responses 

Modern L-TDR designs incorporate gamma-inert-sterilized or conventional 

ultra-high-molecular-weight polyethylene (UHMWPE) cores to improve wear 

resistance, minimize wear debris generation and reduce the risk of revision surgery 

[35]. Whether this contemporary material or the type of TDR design (mobile vs 

fixed) will influence UHMWPE wear debris and the subsequent tissue reactions in 

the spine remain unanswered questions. The hypothesis was that conventional 

UHMWPE cores used in contemporary TDR designs will decrease wear damage and 

periprosthetic tissue reactions compared to historical designs. The goals were to 

determine whether: (1) periprosthetic UHMWPE wear debris and biological tissue 

responses are present in tissues from revised contemporary MOP L-TDRs; (2) there is 

an influence of bearing design (i.e. fully mobile vs. fixed designs) on wear particle 
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number, size and shape; and (3) wear particles characteristics from contemporary 

MOP L-TDRs differ from historical MOP L-TDRs and conventional THRs. 

1.7.2 Aim II: Investigate the Immune Response to UHMWPE Wear Particles and 

the Involvement of Inflammatory Factors known to Play Both a Direct and 

Indirect Role in Inflammatory-mediated Pain 

Pain is the primary reason for revision of artificial discs. However, whether 

pain is mediated or exacerbated as a biological consequence of wear debris remains 

unclear. Hip and knee arthroplasty and in vitro studies have revealed that UHMWPE 

wear debris stimulate resident and recruited macrophages to secrete a number of 

inflammatory cytokines, chemokines, reactive oxygen species and reactive nitrogen 

species [25, 32, 44, 45, 59, 61, 68, 69, 71, 73, 88]. These factors are predominantly 

associated with the induction of bone resorption in TJAs, which can lead to the 

development of osteolysis and implant loosening [73]. However, their presence, 

quantity and role in the clinical failure of contemporary TDR designs have not been 

determined, where pain rather than osteolysis is the central reason for revision. 

Interestingly many of the aforementioned biological factors produced in response to 

wear debris in TJR have also been implicated in nociceptive pain mediation [90, 94]. 

Based on preliminary data from TDR wear debris and tissue analyses performed in 

Aim I, it was hypothesized that biological reactions to wear debris in the spine are 

unique, in that the production and interplay between key inflammatory mediators 

may be contributing to abnormal or enhanced pain sensitization. To test this 

hypothesis and better understand the biological responses in TDR patient tissues 
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with and without detectable wear debris, the second specific aim of this study was to 

analyze periprosthetic tissues from revised artificial discs using 

immunoshistochemistry to quantify the levels of select inflammatory factors that are 

known to play both direct and indirect roles in the mediation of pain. 

1.7.3 Aim III: Evaluate the Relationship between Inflammation, 

Vascularization and Innervation in the Periprosthetic Lumbar Spine to 

Elucidate the Wear-Debris-Induced Pathogenesis based on Localized 

Tissue/Cellular Responses 

As a part of Aim II, we reported an association for the angiogenic factor, 

VEGF with the neutrophin, NGF and the neuropeptide, Substance P. Associations for 

these factors have been previously reported, specifically at the sites of 

neovascularization, where infiltrating vessels are thought to physically provide a 

route for nerves to form and grow [6, 17, 42, 49]. Interestingly, inflammation and 

the production of the proinflammatory cytokines TNFα and IL-1ß were also 

associated with these neovascular changes. Taken together, these findings raise an 

important question: what is the significance of increased vascularization in TDR 

patient tissues and could the number of vessels independently serve as a pathogenic 

indicator and therapeutic target for pain-associated ‘particle disease’ in these 

individuals? To answer this question, macrophage, inflammatory factor and blood 

vessel and nerve cell contributions to the adverse reactions in TDR tissues needed 

to be systematically evaluated. We hypothesized that while inflammation is the 

driving force, increased vascularization may be a key histomorphological change 
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leading to nociception. Therefore, the final and prospective specific aim was to 

elucidate the wear-debris-induced inflammatory pathogenesis in TDR tissues based on 

vascular density and NGF and substance P production at the localized level. 
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CHAPTER 2 

A Systematic Review of Design & Biomaterial Factors Affecting the 

Clinical Wear Performance of Total Disc Replacements† 

2.1 Abstract 

Total disc replacement was clinically introduced to reduce pain and preserve 

segmental motion of the lumbar and cervical spine. Previous case studies have 

reported implant wear and adverse local tissue reactions around artificial 

prostheses, but it is unclear how design and biomaterials affect clinical outcomes. In 

this study, we asked which design and material factors are associated with 

differences in clinical wear performance (implant wear and periprosthetic tissue 

response) of (1) lumbar and (2) cervical total disc replacements?  

To research the literature for publications related to TDR implant wear and 

periprosthetic tissue response, we performed a systematic review using an 

advanced search in MEDLINE and Scopus electronic databases. Of the 340 

references identified, 33 were retrieved for full-text evaluation, from which 16 

papers met the inclusion criteria, which were semi-quantitative analysis of wear and 

adverse local tissue reactions along with a description of the implanted device. The 

16 papers included 12 on lumbar disc replacement and five on cervical disc 

replacement; one of the included studies reported on both lumbar and cervical disc 

replacement. An additional three papers were found by searching bibliographies of 
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the original articles, bringing the total to 19 papers (14 lumbar and 7 cervical 

studies). There were seven case reports, three case series, two case-control studies, 

and seven analytical studies. The Methodological Index for Non-randomized Studies 

(MINORS) Scale was used to score case series and case-control studies, which 

yielded mean scores of 10.3 of 16 and 17.5 of 24, respectively. In general, the case 

series (3) and case-control (2) studies were of good quality. In lumbar regions, 

metal-on-polymer devices with mobile-bearing designs consistently generated small 

and large polymeric wear debris, triggering periprosthetic tissue activation of 

macrophages and the formation of giant cells, respectively.  In the cervical regions, 

metal-on-polymer devices with fixed-bearing designs had similar outcomes. 

Information on lumbar fixed-bearing devices and cervical mobile-bearing devices 

was limited. All metal-on-metal constructs, of both lumbar and cervical constructs, 

tended to generate small metallic wear debris, which typically triggered an adaptive 

immune response of predominantly activated lymphocytes. There were no retrieval 

studies on one-piece prostheses. 

This review provides evidence that design and biomaterials affect the type of 

wear and inflammation. However, clinical study design, follow-up, and analytical 

techniques differ among investigations, preventing us from drawing firm 

conclusions about the relationship between implant design and wear performance 

for both cervical and lumbar total disc replacement. 

2.2 Introduction 
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Total disc replacement (TDR) was clinically introduced as an alternative to 

fusion to reduce pain and preserve segmental motion of the cervical and lumbar 

spine. TDR designs currently on the market may be classified as either fixed- or 

mobile-bearing analogous to total knee replacements. Of these designs, the most 

widely used in the market today include metallic endplates, which are fixed to the 

adjacent vertebral bodies and one or more articulations that involve either metal-

on-polymer or metal-on-metal bearing surfaces. The most commonly used lumbar 

disc replacements have relied on either cobalt-chromium (CoCr) alloy endplates 

articulating with a polymer core of ultrahigh-molecular-weight polyethylene 

(hereafter polyethylene) or metal-on-metal (MoM) bearings fabricated from CoCr 

alloys. In the cervical spine, a broader range of biomaterials have been used, 

including polyethylene, CoCr alloys, stainless steel, titanium (Ti) alloys, 

polyurethanes, polyetheretherketone, and Ti alloy-ceramic composites. In addition 

to the fixed- and mobile-bearing designs, a third “one-piece” classification of 

artificial disc design, in which an elastomeric polymer disc is fixed to metallic 

endplates, is currently undergoing clinical investigation. Thus, the field of artificial 

disc replacement includes a broad range of designs as well as heterogeneous 

assortment of biomaterials for lumbar (Table 2-1) and cervical regions of the spine 

(Table 2-2).  

Although the early developers of disc arthroplasty argued that the release of 

wear debris would not be a clinically relevant issue [1], case studies have emerged 

in the literature over the past decade that illustrate the potential for not only wear 

debris-induced osteolysis with metal-on-polymer (MoP) TDRs, but also adverse 

local tissue reactions for MoM TDRs [2]. Compared with THAs and TKAs, little is 

known about the clinical damage modes for TDRs because the surgery to remove a 
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malfunctioning artificial disc can be challenging, or even life-threatening, especially 

for the lumbar spine [3]. There has been one systematic review of complications in 

cervical disc arthroplasty [4] and previous (nonsystematic) surveys of retrieved 

total disc replacements [5, 6], but the authors are not aware of a previous systematic 

approach to examine the effects of design and material selection on wear, corrosion, 

and tissue response of revised TDRs.  Because the biomechanical requirements for 

TDRs differ for the cervical and lumbar spine and are reflected in both the TDR 

design and material selection, studies on TDRs for each region of the spine should 

be considered separately. 

We therefore performed a systematic review to evaluate which design and 

material factors are associated with differences in clinical wear performance 

(implant wear and periprosthetic tissue response) of (1) lumbar and (2) cervical 

total disc replacements.  

2.3 Search Strategy & Criteria 

This systematic review used guidelines from the Cochrane handbook during 

the development of the study protocol and report [7]. To address the research 

questions posed in this review, studies were identified by searching the MEDLINE 

and Scopus electronic databases. An advanced search was performed in MEDLINE 

through PubMed by querying spine and arthroplasty MeSH terms along with title, 

abstract, and text word fields in the database. The following precise syntax was used 

for the search: ((((((((corrosion[tw] OR wear[tw] OR deform*[tw] OR degra*[tw] 

OR fracture[tw]))) OR (((adverse[tw] AND effects[tw]))))) AND ((((((spin
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Table 2-1. Summary of contemporary lumbar total disc replacements 

Device Manufacturer Classification Biomaterials Bearing design 

IDE trial status 

(www.clincialtrials.gov) Current regulatory status  

CHARITÉ DePuy Synthes Spine, Raynham, MA MoP CoCr-UHMWPE Mobile Completed 

FDA-approved but withdrawn from 

US/OUS market after DePuy Synthes 

merger, 2012 

ProDisc-L DePuy Synthes Spine, West Chester, PA MoP CoCr-UHMWPE Fixed Completed FDA-approved, available US/OUS 

Activ-L Aesculap AG, Tuttlingen, Germany MoP CoCr-UHMWPE Mobile Active; not recruiting Available OUS 

Mobidisc LDR Spine, Troyes, France MoP CoCr-UHMWPE Mobile Terminated Withdrawn 

Maverick Medtronic, Memphis, TN MOM CoCr-CoCr Fixed Completed Available OUS 

Kineflex Spinal Motion Inc, Mountainview, CA MoP CoCr-CoCr Mobile Terminated Withdrawn 

Flexicore Stryker Spine, Allendale, NJ MoP CoCr-CoCr Constrained Not registered Withdrawn 

Baguera L Spineart, Geneva, Switzerland MoP 

Diamolith-coated 

Ti-UHMWPE Fixed Not registered Available OUS 

CAdisc-L Ranier Technology, Cambridge, UK 1P 

1-piece 

polyurethane One-piece Completed Available OUS 

Freedom AxioMed, Garfield, OH 1P 

Ti plates and 

elastomer core One-piece Recruiting Available OUS 

eDisc Integra Spine, Vista, CA 1P 

Ti plates and 

elastomer core One-piece Not registered Available OUS 

Physio-L Nexgen Spine, Whippany, NJ 1P 

Ti plates and 

elastomer core One-piece Not registered Available OUS 

M6-L 

Spinal Kinetics 

Sunnyvale, CA 1P 

Ti plates and 

polyurethane-

UHMWPE fiber 

core One-piece Withdrawn NA 

IDE = Investigational Device Exemption; MoP = metal-on-polyethylene; 1P = one-piece; CoCr = cobalt-chromium; Ti = titanium; OUS = outside United States; NA 

= not available. 
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Table 2-2. Summary of contemporary cervical total disc replacements 

Device Manufacturer Classification Biomaterials 

Bearing 

design IDE trial status  Current regulatory status  

Prestige ST Medtronic, Memphis, TN MoM Stainless steel-stainless steel Fixed Completed FDA-approved, available US/OUS 

Bryan Medtronic, Memphis, TN MoP Ti-PCU Mobile Completed FDA-approved, available US/OUS 

Prodisc-C DePuy Synthes Spine, West Chester, PA MoP CoCr-UHMWPE Fixed Completed FDA-approved, available US/OUS 

PCM Nu Vasive, San Diego, CA MoP CoCr-UHMWPE Fixed Completed FDA-approved, available US/OUS 

Mobi-C LDR Spine, Troyes, France MoP CoCr-UHMWPE Mobile Completed FDA-approved, available US/OUS 

SECURE-C Globus Medical, Audubon, PA MoP CoCr-UHMWPE Mobile Active; not recruiting FDA-approved, available US/OUS 

Activ C Aesculap AG, Tuttlingen, Germany MoP CoCr-UHMWPE Mobile Unknown Available OUS 

Kineflex/C Spinal Motion Inc, Mountainview, CA MoM CoCr-CoCr Mobile Terminated Withdrawn 

CerviCore Stryker Spine, Allendale, NJ MoM CoCr-CoCr Constrained Not registered Withdrawn 

DISCOVER DePuy Synthes Spine, West Chester, PA MoP Ti-UHMWPE Fixed Active; not recruiting Available OUS 

Baguera C Spineart, Geneva, Switzerland MoP Diamolith-coated Ti-UHMWPE Fixed Not registered Available OUS 

Prestige LP Medtronic, Memphis, TN CoC Ti-ceramic composite Fixed Active; not recruiting Available OUS 

NUNEC 
Pioneer Surgical Technology, Marquette, 

MI 
PoP PEEK-PEEK Fixed Recruiting Available OUS 

Freedom AxioMed, Garfield, OH 1P Ti plates and polymer core One-piece Recruiting Available OUS 

NeoDisc Nu Vasive, San Diego, CA 1P Silicone elastomer and textile One-piece Completed Available OUS 

CAdisc-C Ranier Technology, Cambridge, UK 1P 1-piece polyurethane One-piece Not registered Available OUS 

Discocerv Alphatec Spine Inc, Carlsbad, CA CoC Ceramic-ceramic Fixed Terminated Available OUS 

ALTIA Amedica, Salt Lake City, UT CoC 
Ceramic-ceramic  

(silicon nitride) 
Fixed Not registered Available OUS 

CerPass Nu Vasive, San Diego, CA CoM Ceramic-ceramic Fixed Terminated NA 

M6-C 
Spinal Kinetics 

Sunnyvale, CA 
1P Ti plates & PCU-UHMWPE fiber core One-piece Withdrawn NA 

IDE = Investigational Device Exemption; MoM = metal-on-metal; MoP = metal-on-polymer; CoC = ceramic-on-ceramic; PoP = polymer-on-polymer; 1P = one-

piece; CoM = ceramic-on-metal; Ti = titanium; PCU = poly(carbonate urethane); CoCr = cobalt-chromium; PEEK = polyether ether ketone; OUS = outside United 

States; NA = not available.   
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e[mh]) OR ((Spinal[tw] OR disc[tw] OR disk[tw]))) AND ((((((artificial[tw] AND 

prosthe*[tw]))) OR (((disc[tw] AND arthroplast*[tw]) OR (Disc[tw] AND implant) 

OR (Disc[tw] AND replace*) OR (Disc[tw] AND prosthe*)))) OR posterior 

fusion[tw]) OR (stabilization[tw]) ))) AND ((peek[tw] OR polyethylene[tw] OR 

polycarbonate urethane[tw] OR cobalt chromium[tw] OR prodisc[tw] OR 

freedom[tw] OR charite[tw] OR maverick[tw] OR kineflex[tw] OR activ[tw] OR 

mobidisc[tw] OR flexicore[tw] OR xl[tw] OR bryan[tw] OR prestige[tw] OR 

cadisc[tw] OR nubac[tw] OR secure[tw] OR discover[tw] OR nunec[tw] OR pcm[tw] 

OR dynesys[tw]))))))) NOT (finite element[tiab] OR biomechanical analysis[tiab] OR 

biomech*[ti] OR model[tiab] OR MRI[tiab] OR clinical outcome*[ti] OR 

ossification[ti]) AND "humans"[mh] AND ("2000/01/01"[pdat] : 

"2013/12/31"[pdat]) AND "English"[la]. The search was streamlined to specifically 

identify reports of wear, corrosion, and periprosthetic tissue response after spinal 

arthroplasty. Terms in the latter portion of the code were chosen based on the 

brand names of motion preservation devices currently in active use or under 

investigation. Lastly, the search code excluded papers centrally themed around 

finite element analysis, biomechanical modeling, or strict clinical outcomes. PubMed 

filters further restricted results to human studies and reports published in English. 

Using the aforementioned criteria, 160 articles were obtained from MEDLINE 

published between January 1, 2001, and April 30, 2014. The same search strategy 

and filters were used for the Scopus database, yielding 180 articles, many of which 

overlapped the search results from MEDLINE. The following precise syntax was 
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used in Scopus: (((((TITLE-ABS-KEY(corrosion) OR TITLE-ABS-KEY(wear) OR 

TITLE-ABS-KEY(deform*) OR TITLE-ABS-KEY(degra*) OR TITLE-ABS-

KEY(fracture))) OR (((TITLE-ABS-KEY(adverse) AND TITLE-ABS-KEY(effects))))) 

AND ((((((TITLE-ABS-KEY(spine) OR TITLE-ABS-KEY(spinal) OR TITLE-ABS-

KEY(disc) OR TITLE-ABS-KEY(disk))) AND ((((((TITLE-ABS-KEY(artificial) AND 

TITLE-ABS-KEY(prosthe*))) OR (((TITLE-ABS-KEY(disc) AND TITLE-ABS-

KEY(arthroplast*) OR (TITLE-ABS-KEY(disc) AND TITLE-ABS-KEY(implant)) OR 

(TITLE-ABS-KEY(disc) AND TITLE-ABS-KEY(replace*)) OR (TITLE-ABS-KEY(disc) 

AND TITLE-ABS-KEY(prosthe*))))) OR TITLE-ABS-KEY(fusion)) OR (TITLE-ABS-

KEY(stabilization))))) AND ((TITLE-ABS-KEY(peek) OR TITLE-ABS-

KEY(polyethylene) OR TITLE-ABS-KEY(polycarbonate urethane) OR TITLE-ABS-

KEY(cobalt chromium) OR TITLE-ABS-KEY(prodisc) OR TITLE-ABS-KEY(freedom) 

OR TITLE-ABS-KEY(charite) OR TITLE-ABS-KEY(maverick) OR TITLE-ABS-

KEY(kineflex) OR TITLE-ABS-KEY(activ) OR TITLE-ABS-KEY(mobidisc) OR TITLE-

ABS-KEY(flexicore) OR TITLE-ABS-KEY(xl) OR TITLE-ABS-KEY(bryan) OR TITLE-

ABS-KEY(prestige) OR TITLE-ABS-KEY(cadisc) OR TITLE-ABS-KEY(nubac) OR 

TITLE-ABS-KEY(secure) OR TITLE-ABS-KEY(discover) OR TITLE-ABS-KEY(nunec) 

OR TITLE-ABS-KEY(pcm) OR TITLE-ABS-KEY(dynesys)))))))) AND NOT (TITLE-

ABS-KEY(finite element) OR TITLE-ABS-KEY(biomechanical analysis) OR TITLE-

ABS-KEY(biomech*) OR TITLE-ABS-KEY(model) OR TITLE-ABS-KEY(mri) OR 

TITLE-ABS-KEY(clinical outcome*) OR TITLE-ABS-KEY(ossification))) AND 

(PUBYEAR > 1999 AND PUBYEAR < 2015) AND (LIMIT-TO(LANGUAGE,"English")). 
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Of the 340 papers obtained using the search strategies, duplicates were 

removed and studies were then screened and assessed for eligibility to be included 

in the systematic review (Figure 2-1). Screening of titles and abstracts revealed 55 

articles with potential relevance for this review. Next, in vitro studies and review 

articles were excluded, narrowing the number of eligible papers for inclusion to 33. 

An additional three studies were located by searching bibliographies of key articles 

and identifying full-text articles by hand search. Further full-text assessment for 

eligibility led to the exclusion of papers without any semiquantitative analyses of 

wear, corrosion, osteolysis, or adverse local tissue reactions; this left 19 articles 

meeting the inclusion criteria, of which 14 were lumbar and seven were cervical 

TDR studies (with one overlapping study). The majority of clinical research was 

low-level evidence [8] and included a total of seven Level V case reports, three Level 

IV case series, and two Level III case-control studies. Case series and case-control 

studies, in general, were good-quality studies with mean scores of 10.3 of 16.0 and 

17.5 of 24.0, respectively, on the Methodological Index for Non-randomized Studies 

(MINORS) Scale [9]. The main limitations to these studies included the lack of 

unbiased assessments, sufficiently long follow-up implantation times, and 

prospective calculations of study size. We did not grade study quality for the seven 

analytical reports because a suitable tool for this purpose is not available.   

Each study was reviewed in detail by three authors (SYV, MJS, SMK). Data 

were extracted using a standardized form, which included study design, number of 

patients, patient demographic information, implant type, design, biomaterials, and 
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Figure 2-1. A flow diagram demonstrates the systematic review protocol. 

outcome measures for device damage, wear, corrosion, metal ion levels, histology, 

and osteolysis. Some overlapping studies involving the same patients were included        

if the authors reported on larger patient pools in prospective retrieval studies or if 

authors evaluated varying durations of follow-up in clinical metal-ion investigations. 

For the systematic review, we summarized the authors’ assessments of the 

removed artificial disc wear, corrosion, and/or periprosthetic tissue responses. We 

then classified these damage factors as absent or present in the patient cohorts to 

evaluate the impact of implant design and biomaterials on wear and corrosion 

performance. Given the methodological and analytical heterogeneity (ie, between-
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study variation) between the studies included in this systematic review, the 

retrospective nature of the clinical series, and the absence of control groups in many 

of the studies, we were unable to combine data across studies to perform a 

quantitative meta-analysis. Instead we sought to examine each study to obtain the 

desired information concerning clinical performance outcomes based on implant 

design, wear performance, and local tissue reactions in light of each study’s 

strengths and limitations. 

2.4 Results 

2.4.1 Lumbar Total Disc Replacement 

In MoP studies, the mobile-bearing designs, CHARITÉ (Depuy Synthes Spine, 

Raynham, MA, USA), Activ-L (Aesculap AG, Tuttlingen, Germany), and Mobidisc 

(LDR Spine, Troyes, France), demonstrated evidence of polyethylene surface 

damage, polyethylene wear debris, and innate periprosthetic inflammation; fixed-

bearing ProDisc-L (DePuy Synthes Spine, West Chester, PA, USA) devices evidenced 

a high frequency of endplate impingement and metal wear debris (Table 2-3). A 

total of 49 mobile-bearing MoP retrievals with gamma-air-sterilized polyethylene 

were evaluated in two studies (48 from one report and one from a case study) [10, 

11]. Impingement, typically between the polyethylene core and the metallic 

endplate, was observed in 34 of 49 (69%) of the retrievals in those two studies. Two 

separate studies analyzed periprosthetic tissues from 22 of the 48 retrievals and 

reported polyethylene wear and inflammation in 16 of 22 (73%) patients [12]. A 

direct association was observed for severe or moderate impingement, wear debris, 
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and inflammation for 11 of the 34 impinged devices [13]. Despite the high incidence 

of polyethylene wear, osteolysis was only reported in one of 48 (2.1%) implants 

[10].  For mobile-bearing designs with conventional or gamma-inert-sterilized 

cores, a single report on three retrievals found wear particle generation was two 

orders less when compared to gamma-air-sterilized cores [14]. Nevertheless, 

impingement, wear debris, and innate inflammation were observed in all three 

retrievals. For fixed-bearing designs, one study reported burnishing in 11 of 19 

(58%) and another reported the same wear mechanism in one of one retrieval [15, 

16]. In a separate case report for a prosthesis removed as a result of migration, the 

presence of metallic debris was observed on the polyethylene core [17].  

In MoM studies, both mobile-bearing Kineflex (Spinal Motion Inc, 

Mountainview, CA, USA) and fixed-bearing Maverick (Medtronic, Memphis, TN, USA) 

devices generated metallic debris accompanied by a mixed innate and adaptive 

immune response. Based on a case report of two mobile-bearing retrievals, implant 

damage in one was negligible and unreported in the second; however, tissues from 

both devices contained metallic debris [18]. Similarly, fixed-bearing implant 

analysis of tissues from two separate case studies [18, 19] reported metallic debris. 

Furthermore, all tissue retrievals showed mixed inflammation. Two independent 

studies looking at systemic metal ions found elevated serum Co and Cr ion levels 

postoperatively between 0.25 and 49.4 years [20, 21].  

2.4.2 Cervical Total Disc Replacement 
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In MoP studies, there were no reports on mobile-bearing designs; the fixed-

bearing designs, ProDisc-C (DePuy Synthes Spine, West Chester, PA, USA) and Bryan 

Cervical Disc (Medtronic, Memphis, TN, USA), showed a high frequency of endplate 

impingement with polymeric wear debris and mixed inflammation (Table 2-4). As 

observed in lumbar fixed-bearing designs, burnishing was consistent with metallic 

endplate impingement in 24 of 30 (80%) retrievals [22]. A separate case report 

notedone rare incidence of osteolysis [23]. In another study, impingement was 

observed in nine of 30 (30%) retrievals [5]. Tissues obtained from 15 of these 30 

devices showed polymeric debris. Similarly, a separate case study reported 

polymeric debris [24]. Metallic debris was infrequent to negligible in all but one of 

the cases [25]. An innate immune response was predominant in all tissues,  although 

a few isolated regions of lymphocytic infiltration were noted [5]. In MoM studies, 

impingement was observed in one case study of a mobile-bearing Kineflex/C (Spinal 

Motion Inc, Mountainview, CA, USA) device; fixed-bearing Prestige Cervical Disc 

(Medtronic, Memphis, TN, USA) devices evidenced impingement, metallic debris, 

and mixed inflammation.  

A case study on one mobile-bearing device reported no evidence of metal 

particles in tissues, but visual evidence of metallosis within the joint tissue was 

pronounced [18]. In devices with fixed-bearing designs, impingement was evident in 

11 of 16 (68.8%) retrievals, typically in anterior regions [5]. In addition, screw hole 

fretting and fretting adjacent to bone screws were detected. Metallosis was 

observed in all 15 (100%) patients with tissue retrievals and metallic debris within 

the tissue was noted, but in both cases its distribution was not uniform and was 
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described as focal. A separate study with an unreported bearing design also 

reported the presence of metallic debris in tissue retrievals [26]. Mixed 

inflammation was observed in all tissues for both mobile- and fixed-bearing designs. 

2.5 Discussion 

Although benefits of treating degenerative disc conditions with TDR include 

preservation of motion and limiting stress at adjacent vertebra, potential 

complications associated with wear debris remain a concern. The aim of this study 

was to systematically review reports of wear, corrosion, and subsequent biological 

responses for lumbar and cervical TDR. Additionally, we sought to determine 

whether design and material issues were associated with the wear and corrosion 

behavior of these motion-preserving spinal devices. After analyzing reports from 14 

lumbar and seven cervical studies (in 19 papers), we found that wear-associated 

complications may be specific to the biomaterial used for TDR in both regions of the 

spine. Specifically, MoP devices typically produced polymeric wear debris, which 

was usually accompanied by an innate inflammatory response. On the other hand, 

MoM constructs tended to generate small metallic wear debris and metal ions, 

which activated an adaptive immune mechanism leading to adverse local tissue 

reactions in some patients.   

As of the time of this writing, for the one lumbar and five cervical disc 

artificial disc designs that have been approved by the FDA, only one is a MoM 

cervical device fabricated from stainless steel (Table 2). MoM prostheses have been 

under heavy scrutiny by researchers/regulators given the high-profile concern of 
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previous recall and warnings of THA devices with Co-based alloy MoM bearings 

[27]. Metallosis and subsequent soft tissue reactions and pseudotumors have been 

reported in patients with CoCr MoM articulations, in which some cases showed 

aseptic lymphocyte-dominated vasculitis-associated lesion response associated with 

normal implant wear rates [2, 18]. Metal hypersensitivity is also an issue with CoCr 

designs [26], although the relationship between delayed hypersensitivity and 

metallic debris remains unclear. Adverse host responses may also be triggered by 

metal tribochemical reactions in vivo, but to our knowledge, there have been no 

direct and standardized measurements of implant corrosion in TDRs. Although 

fretting and corrosion products were observed in some cervical MoM TDRs [5, 24], 

the extent of corrosive removal of metal in these devices remains unclear. Serum 

assays after lumbar TDR have revealed an elevation in Co and Cr ions, thereby 

inferring corrosion, but it was later concluded that these levels were similar to those 

observed for successful MoM THAs [20, 21, 28]. Despite these biomaterial issues, 

using MoM designs has its benefits, for example, these devices are theoretically 

designed to achieve lower volumetric wear (mainly as a result of lower friction) in 

comparison to traditional MoP designs, which potentially would reduce local 

inflammation and osteolysis. Also, it is worth noting that adverse local tissue 

reactions have been reported with all implant designs; thus, the small number of 

case reports for MoM studies exhibit important risks/complications of the 

technology. Further long-term follow-up studies are necessary to better understand 

the impact of such designs/materials on long-term wear rates.  
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Table 2-3. Summary of findings from 14 published studies of retrieved implants, tissues, & fluids from lumbar total disc 
replacements 

Classification Bearing 
design 

Device Study Mean 
implant

ation 
time 

(years) 

Impingement 
 

Periprosthetic 
debris 

Inflammation Osteolysis Systemic 
metal ions  
measured 
(# of 
patients) 

      Polymeric Metallic Innate Adaptive   

MoP Mobile CHARITÉ David, 2005 [9] 9.5 0/1  NR NR NR NR    0/1    NR 

MoP Fixed ProDisc-L Stieber and Donald, 2006 [37] 0.1 NR  NR 1/1 NR NR    NR    NR 

MoP Mobile CHARITÉ van Ooij et al, 2007 [40] 9.4 5/5  5/5 0/5 Y N    1/5    NR 

MoP Mobile CHARITÉ Kurtz et al, 2009 [21] 8.50 34/48*  NR NR NR NR   1/48*    NR 

MoP Fixed ProDisc-L Choma et al, 2009 [5] 1.2 1/1  1/1 0/1 N N    NR    NR 

MoP Mobile Activ-L; 
Mobidisc 

Austen et al, 2012 [2] 1.9 3/3  3/3 0/3 Y N    NR    NR 

MoP Mobile CHARITÉ Punt et al, 2012 [34] 10.0 NR  21/22 0/22 Y N    NR    NR 

MoP Fixed ProDisc-L Lebl et al, 2012 [26] 1.1 11/19  NR NR NR NR    NR    NR 

MoP Mobile CHARITÉ Baxter et  al, 2013 [3] 9.7 NR  11/11 0/11 Y N    NR    NR 

MoM Fixed Maverick Francois et al, 2007 [12] 1.2 NR  NA 1/1 Y Y    NR    NR 

MoM Fixed Maverick Zeh et al, 2009 [42]† 3.1 NR  NA NA NA NA    NA   15/15 

MoM Mobile Kineflex Guyer et al, 2011 [17] 1.7 NR  NA 2/2 Y Y    NR    NR 

MoM Fixed Maverick Guyer et al, 2011 [17] 3.1 NR  NA 1/1 Y Y    NR    NR 

MoM Fixed Maverick Kurtz et al, 2012 [24] 1.3 2/7  NA 1/1 Y Y    NR    NR 

MoM Fixed Maverick Gornet et al, 2013 [16]† 3 NR  NR NR NR NR    NR   24/24 

*This cohort includes retrievals from study performed by van Ooij et al [40]; †these are metal ion clinical studies, not retrieval studies; MoP = metal-on-
polyethylene; MoM = metal-on-metal; NR = not reported; Y = yes; N = no; NA = not applicable. 
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Table 2-4. Summary of findings from eight published studies of retrieved implants and tissues from 
cervical total disc replacements 

Classification Bearing 
design 

Device Study Mean 
implantation 
time (years) 

Impingement Periprosthetic 
debris 

Inflammation Osteolysis 

      Polymeric Metallic Innate Adaptive  

MoP Fixed Bryan Anderson 
et al, 2004 

[1] 

1.0 NR 2/2 0/2 Y N NR 

MoP Fixed ProDisc-C Tumailan 
and Gluf, 

2011 [38] 

1.3 NR NR NR NR NR 1/1 

MoP Fixed Bryan Fan et al, 
2012 [11] 

8.0 NR 1/1 1/1 NR NR NR 

MoP  Fixed Bryan Kurtz et al, 
2012 [24] 

3.2 9/30 15/15 ~0/15 Y Y NR 

MoP Fixed ProDisc-C Lebl et  al, 
2012 [27] 

1.0 24/30 NR NR NR NR NR 

MoM Fixed Prestige Anderson 
et al, 2004 

[1] 

2.4 0/2 NA 2/2 Y Y NR 

MoM Mobile Kineflex/C Cavanaugh 
et al, 2009 

[4] 

~0.6 NR NA 1/1 Y Y NR 

MoM Mobile Kineflex/C Guyer et al, 
2011 [17] 

1.2 1/1 NA 0/1 Y Y NR 

MoM Fixed Prestige Kurtz et al, 
2012 [24] 

2.0 11/16 NA 15/15 Y Y NR 

       MoP = metal-on-polyethylene; MoM = metal-on-metal; NR = not reported; Y = yes; N = no; NA = not applicable. 
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Unlike MoM devices, the central concern with the use of MoP devices is the 

generation of polymeric wear debris from bearing surfaces and the subsequent 

innate inflammatory response. Recent studies on MoP TDRs have revealed that 

tissue responses resulting from wear-related damage are indeed comparable to 

responses seen in total joint arthroplasties (TJAs) [12]. However, for THAs, 

polyethylene wear activates an innate inflammatory response that is associated 

with osteolysis and aseptic loosening, which is a fundamental cause of clinical 

failure [29, 30]. Vertebral osteolysis, on the other hand, appears to be a rare 

phenomenon in the spine and has only been reported in one patient with lumbar 

mobile-bearing TDR and one patient with cervical fixed-bearing TDR in the retrieval 

studies [23, 31] included in this review. Explanations for the relatively low 

frequency of osteolysis may include the low ranges of motion in the anterior column 

of the lumbar spine and an absence of resident macrophages and synovium 

compared with the hip and knee [1]. Furthermore, the reduced particle 

concentration/number, degree of inflammation and/or cytokine levels may be too 

low to directly cause osteolysis [14]. Reduced cytokine levels and/or local cellular 

responses to these factors is of particular interest since similar cytokines which 

include tumor necrosis factor-α, interleukin-1, and interleukin-6 are released by 

macrophages and giant cells in both tissue types; however, osteoclastogenesis is 

observed in THAs and neuroinflammatory pain in TDRs [32, 33]. For these reasons, 

the presence of wear remains a critical concern in the spine. 

 This review consisted primarily of papers reporting on wear performance of 

MoP retrievals with fixed- or mobile-bearing designs; collectively, these reports 
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indicated that wear damage mechanisms may be linked to the bearing design. 

Mobile-bearing retrievals tended to have characteristic multidirectional scratches 

with adhesive/abrasive wear mechanisms at the dome (much like THAs) and 

microadhesive/microabrasive wear mechanisms at the rim (much like TKAs) [34]. 

Although several fixed-bearing retrievals also had signs of scratches in the dome 

regions, a large percentage had characteristic metallic and endplate burnishing 

typically in the posterior region associated with impingement [15]. Also, fatigue-

related rim damage and radial crack formation were only reported in gamma-air-

sterilized cores of historical mobile-bearing retrievals, attributable to oxidative 

degradation [10, 11]. This was not evident in gamma-inert sterilized fixed-bearing 

designs and it is possible that the fixture of the core in designs may contribute to 

these wear mechanisms. The increased mobility and abnormalities in ROMs in 

mobile-bearing designs can influence the number and type of wear debris 

generation. Although flexion/extension ROM was restored to physiological ranges 

by both designs [35-37], mobile-bearing devices provide higher degrees of freedom 

(i.e., CHARITÉ; 5 DOF) compared with fixed bearings (i.e., ProDisc-L; 3 DOF).  The 

long-term consequences of the differing kinematics on wear debris generation and 

subsequent inflammation remain unclear. 

 For the papers identified by the systematic search, there were no studies of wear 

for one-piece spine retrievals, thereby highlighting a need for research on nonball-

and-socket type designs to evaluate their effectiveness and resistance to 

wear/corrosion. Ball-and-socket articulating bearings were originally modeled from 

total joint arthroplasties, which raises the question whether they replicate the 
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biomechanics of the intervertebral disc. Ball-and-socket designs are typically rigid 

in the axial direction and are not designed to resist moments in bending or rotation 

forces like the natural and deformable spinal disc, which may lead to altered ROM, 

segmental lordosis, or overloading of facet joints [38-41]. One-piece designs 

typically incorporate compliant elastomer biomaterials to mimic the physiological 

six degrees of freedom [42, 43]. Although the first one-piece model, known as the 

Acroflex (DePuy-AcroMed, Inc., Raynham, MA) discs, was abandoned as a result of 

failure of elastic rubber [44], newer designs have developed to improve the 

technology, including solving the issue of bonding elastic components to titanium 

endplates. Long-term follow-up studies are required to better understand the wear 

performance for these devices. 

In summary, current TDRs have been developed using total joint arthroplasty 

models and thus comparable biomaterial issues have been observed. MoP devices 

raise a concern for the production of polymeric wear debris that initiates innate 

inflammation. MoM devices present the risk of generating small metallic debris, 

metal ion release, adaptive host responses, metal hypersensitive reactions, and 

pseudotumor formation. Increases in systemic metal ion levels have also been 

detected, raising the likelihood of responses in other tissues. Design factors such as 

mobile- and fixed-bearing or one-piece constructs may also influence wear 

performance of TDRs, but more research is necessary to better understand which 

models truly mimic the natural motions of the spine while minimizing wear. 

Additional analytical studies with standardized cohort and case-control based 

observations would augment the existing body of literature and facilitate a more 
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formal quantitative assessment of TDR material and design. In addition, future 

studies need to address how design and wear of the various biomaterials impact 

neuroinflammation in the spine, considering pain is the primary reason for revision 

of both lumbar and cervical TDRs.  

2.6 Study Limitations 

Limitations of this review included the number limited number of studies 

and the mixed quality of the research, of which only a small number of case-control 

studies scored well on the MINORS quality scale. Furthermore, in the application of 

our inclusion and exclusion criteria, studies that did not report at least 

semiquantitative measures of wear were excluded, thus potentially eliminating 

studies with some important clinical information and patient outcomes in response 

to the use of certain implant designs/biomaterials. It is also important to note that 

all the studies that were included involved cases in which the primary revision 

reason was pain rather than an association with wear, and tissue evaluations of 

wear debris and inflammatory responses were limited. Nevertheless, these criteria 

were necessary to report common endpoints and measurable findings that could be 

summarized and evaluated. Finally, variability in the reporting of wear and related 

damage mechanisms made it difficult to synthesize results as did the inclusion of 

data from case reports, which lack a representative comparison group. Standardized 

test methods for retrieval analysis of TDRs have only recently been developed [5]; 

thus, older studies included in this review typically relied on visual characterization 

of wear.  
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CHAPTER 3 

Retrieval Analyses of Contemporary Lumbar TDRs & 

Periprosthetic Tissue Responses† 

3.1 Abstract 

Lumbar total disc replacement (L-TDR) is a procedure used to relieve lower 

back pain and maintain mobility. Contemporary metal-on-polyethylene (MoP) L-

TDRs were developed to address wear performance concerns about historical 

designs, but wear debris generation and periprosthetic tissue reactions for these 

newer implants have not been determined. The purpose of this study was to 

determine (1) whether periprosthetic ultrahigh-molecular-weight polyethylene 

(UHMWPE) wear debris and biological responses were present in tissues from 

revised contemporary MoP L-TDRs that contain conventional cores fabricated from 

γ-inert-sterilized UHMWPE; (2) how fixed- versus mobile-bearing design affected 

UHMWPE wear particle number, shape, and size; and (3) how these wear particle 

characteristics compare with historical MoP L-TDRs that contain cores fabricated 

from γ-air-sterilized UHMWPE. We evaluated implant retrievals and periprosthetic 

tissues from 11 patients who received eight fixed-bearing ProDisc-L and four 

mobile-bearing CHARITÉ contemporary L-TDRs with a mean implantation time of 

4.1 and 2.7 years, respectively. Implants were first examined for wear and surface 

damage. Histologic analysis of tissues was then performed to assess biological 

responses and polarized light microscopy was used to quantify number and 
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size/shape characteristics of UHMWPE wear particles. Comparisons were made to 

previously reported particle data for historical L-TDRs. All fixed-bearing (100%) 

and two of four mobile-bearing (50%) implant component retrievals indicated wear 

damage. Five of seven (71%) fixed-bearing and one of four mobile-bearing L-TDR 

patient tissues contained at least 4 particles/mm2 wear with associated macrophage 

infiltration. Tissues with wear debris were highly vascularized, whereas those 

without debris were more necrotic. Given the samples available, the tissue around 

mobile-bearing L-TDR was observed to contain 87% more, 11% rounder, and 11% 

less-elongated wear debris compared to tissues around fixed-bearing devices; 

however, there were no significant differences. Compared to historical L-TDRs, 

UHMWPE particle number and circularity for contemporary L-TDRs were 99% less 

(p = 0.003) and 50% rounder (p = 0.003). In this study, short-term results suggest 

there was no significant influence of fixed- or mobile-bearing design on wear 

particle characteristics of contemporary L-TDRs, but conventional UHMWPE has 

notably improved the wear resistance of these devices compared to historical 

UHMWPE.      

3.2 Introduction 

Lumbar total disc replacement (L-TDR) is an established alternative to spinal 

fusion for degenerative disc disease and its associated lower back and leg pain. With 

the goal to preserve natural segmental motion in the spine, commonly used implant 

designs incorporate cobalt-chromium (CoCr) metallic endplates, which are fixed to 

the adjacent vertebral bodies, articulating against a polymer core made of ultrahigh-
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molecular-weight polyethylene (UHMWPE). As a result of the decreased sliding 

distance in metal-on-polyethylene (MoP) L-TDRs compared with THA and TKA, 

wear and osteolysis of L-TDRs were originally thought to be negligible in the 

anterior column of the lumbar spine [24, 25]. However, studies of historical L-TDRs 

with γ-air-sterilized UHMWPE cores have demonstrated wear of the UHMWPE core 

along with rare cases of osteolysis in the lumbar spine [21, 44]. Additionally, both 

submicron (0.05-2 µm) and large UHMWPE wear particles ( 2 µm) were present in 

periprosthetic tissues from historical TDRs [33, 34]. The presence of wear debris 

was associated with an innate inflammatory response and in one case contributed to 

osteolysis. The particle shapes were comparable to those observed in revision 

tissues from THA and generally round to oval in morphology, whereas the TKA 

particles were more needle-shaped [33]. The mean particle numbers were similar 

and ranged from 0 to 1002 particles/mm2 [33]. Additionally, the extent of 

impingement of the implant positively correlated with increased submicron wear 

debris and thus, biological activity of the particles [5]. Collectively, these studies and 

others have established the clinically relevant complication of UHMWPE core wear 

for historical L-TDRs [20, 22, 32, 42, 43] and served as an impetus for improving 

bearing surface materials and designs. 

 Contemporary L-TDR designs incorporate γ-inert-sterilized (conventional) 

UHMWPE cores and air-impermeable packaging to improve oxidation resistance 

and thus enhance the wear performance of the cores [19, 45]. The ProDisc-L (DePuy 

Synthes Spine, West Chester, PA, USA) and CHARITÉ (originally Waldemar Link, 

Hamburg, Germany, later fabricated by DePuy Spine, Raynham, MA, USA, and 
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currently discontinued) are two established contemporary designs. The 

biomaterials used in the fabrication of the ProDisc-L prosthesis are quite similar to 

theCHARITÉ as they both consist of two CoCr alloy endplates articulating against a 

conventional UHMWPE core component. Although the materials used in these L-

TDRs are similar, there are differences in the design of these implants. Unlike the 

mobile-bearing design of the CHARITÉ, the core of ProDisc-L is fixed through a 

locking mechanism into the inferior endplate, thus allowing relative motion only 

between the core and the superior endplate [18]. Other contemporary L-TDRs 

designs currently in clinical use are the Mobidisc (LDR Spine, Troyes, France) and 

Activ-L (Aesculap AG, Tuttlingen, Germany), which use similar biomaterials in 

fabrication but differ specifically from the CHARITÉ in the amount of constraint 

presented by the bearing. To our knowledge, only one case report has evaluated 

retrievals of Mobidisc and Activ-L from two patients [2], and there is still limited 

understanding of implant wear or periprosthetic tissue reactions for contemporary 

MoP L-TDRs. Additionally, it remains unclear whether the L-TDR design will 

influence the generation of UHMWPE particles and their associated biologic 

response.  

 In this study, we analyzed retrievals of two contemporary designs of fixed-

bearing and mobile-bearing L-TDRs to evaluate γ-inert-sterilized UHMWPE 

performance in vivo and to compare design differences. We asked: (1) are 

periprosthetic UHMWPE wear debris and associated biological responses present in 

tissues from revised contemporary MoP L-TDRs that contain cores fabricated from 

γ-inert sterilized UHMWPE; (2) what is the influence of bearing design (i.e., fully 
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mobile versus fixed designs) on wear particle number, size, and shape; and (3) how 

do the dectectable wear UHMWPE particles from contemporary MoP L-TDRs 

compare with historical MoP L-TDRs that contain cores fabricated from γ-air-

sterilized UHMWPE? 

3.3 Materials & Methods 

3.3.1 Tissue Collection & Patient Clinical Information  

 
Figure 3-1. Tissues are harvested from annular regions during L-TDR revision 

surgery. 

 Spine tissues from regions adjacent to the implanted device were obtained at the 

time of revision surgery (Figure 3-1). Tissues, along with their respective devices, 

were collected as part of a public, multicenter retrieval research program initiated 

in 2004 [17, 22]. Contemporary TDRs were classified as modern device designs 

incorporating components made of γ-inert-sterilized UHMWPE GUR 1020 resin; this 
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study investigated tissue retrievals from around two contemporary lumbar designs: 

the fixed-bearing ProDisc-L and mobile-bearing CHARITÉ. The fixed-bearing L-TDR 

cohort included seven patients and eight implants (implantation time, 1-6 years; 

mean, 4.1 years), whereas the mobile-bearing cohort included four patients and four 

implants (implantation time, 2-3 years; mean, 2.7 years).  All were primarily revised 

for persistent back and/or leg pain and, for two of the patients, osteolysis was 

observed (Table 3-1). Implant subsidence or migration was a complication noted in 

three patients with fixed-bearing and one patient with mobile-bearing L-TDRs 

(Figure 3-2). Primary surgical tissues were obtained from other L-TDR patients and 

served as controls. Quantitative findings on particle number and were compared to 

our previous findings for 16 patient tissue responses from revised historical TDRs, 

SB CHARITÉ III, in which the core was either γ-air-sterilized UHMWPE GUR 412 

resin or γ-inert-sterilized UHMWPE GUR 1020 resin with polymer barrier packing 

that allowed exposure to air [32]. 

 
Figure 3-2. Sagittal CT scan illustrating implant subsidence at the L4 level on 
the right side of the vertebra from a fixed-bearing L-TDR patient (BHSP023). 
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Table 3-1. Clinical information of MoP L-TDR retrievals 

Patient ID Device Bearing 

design 

Patient 

sex 

Age at 

implantation 

(years) 

Primary diagnosis Level Year of 

index 

surgery 

Year of 

removal 

surgery 

Implantation 

time (years) 

Revision reason(s) Complications Osteolysis 

BHSP 022 ProDisc-L Fixed Male 41 Herniated disc; 

lumbar pain/ 

radiculopathy 

L4-L5 2007 2012 5.0 Right L4-L5 arthropathy; 

facet pain; progressive 

degeneration; 

radiculopathy 

 Yes 

BHSP 023 ProDisc-L Fixed Male 56 Herniated disc; 

lumbar pain/ 

radiculopathy 

L4-L5 2009 2012 3.0 Increasing pain in the back, 

lower back and left quad 

Subsidence Yes 

BHSP 025a 

BHSP 025b 

ProDisc-L 

ProDisc-L 

Fixed 

Fixed 

Male 49 Disc degeneration; 

discogenic back 

pain 

L4-L5; 

L5-S1 

2009 2013 4.0 Severe pain Posterior 

migration; 

compressing nerve 

roots 

No 

BHSP 026 ProDisc-L Fixed Female N/A N/A L5-S1 N/A 2012 N/A Persistent pain  No 

BHSP 027 ProDisc-L Fixed Female 33 Herniated disc 

w/degeneration; 

back pain 

L4-L5 2008 2013 5.0 Lumbar pain; radiculopathy  No 

BHSP 0032 ProDisc-L Fixed Male 46 N/A L5-S1 2008 2014 6.0 Severe lower back pain; L4-

L5 disc injury; 

radiculopathy 

Subsidence; upper 

level degeneration 

No 

PDL 004 ProDisc-L Fixed Female 27 Unremitting lower 

back pain 

L5-S1 2008 2009 1.3 Pain; ventral encroachment 

into spinal canal 

Partial dissociation No 

BRSP 003 CHARITÉ Mobile Male 28 Disc degeneration L4-L5 2006 2008 1.5 Discogenic pain  No 

BRSP 004 CHARITÉ Mobile Female 22 Disc degeneration L5-S1 2004 2008 3.3 Discogenic pain  No 

BRSP 006 CHARITÉ Mobile N/A N/A Disc degeneration L4-L5 2005 2008 2.7 Painful instrumentation Subsidence; 

scarring in disc 

space 

No 

BRSP 007 CHARITÉ Mobile N/A N/A Painful retained 

hardware 

L5-S1 2005 2008 3.3 Pain Periprosthetic 

scarring 

No 

MoP = metal-on-polyethylene; L-TDR = lumbar total disc replacement; N/A = not available
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3.3.2 Implant Retrieval Analysis  

         All implants were cleaned with 10% bleach and examined under a 

stereomicroscope equipped with a digital camera (Leica DFC490, Wetzlar, 

Germany) to assess surface damage and gross fracture. All components were 

inspected to identify surface damage mechanisms (plastic deformation, scratching, 

burnishing, pitting, and embedded debris). Select implant components with 

macroscopic surface damage were further analyzed using scanning electron 

microscopy (SEM; Supra 50 VP, Zeiss Peabody, Massachusetts) to identify specific 

wearing patterns and distinguish any iatrogenic damage introduced by the surgeon 

during the retrieval process. Lastly, Energy-dispersive X-ray spectroscopy (EDS) 

was utilized to detect and identify any abnormal surface deposits on implant 

components, whereas x-ray fluorescence (XRF) was used to conduct elemental 

analysis on the interior of the metallic endplates to ensure they met the American 

Society for Testing and Materials (ASTM) weight standards. 

3.3.3 Tissue Preparation and Histological Analysis  

         Tissues collected from revision and primary surgeries were fixed in either 

formalin or Universal Molecular Fixative (UMFIX; Sakura Finetek USA, Inc, Torrance, 

CA, USA). One to two 4-mm punches from each tissue, considering variations in 

color, texture, and size of specimen, were embedded in paraffin blocks, and 6-µm 

serial sections were mounted onto ProbeOnPlus (Fischer Scientific Co, Pittsburgh, 

PA, USA) slides. Slides were dewaxed, rehydrated, and stained with hematoxylin, 
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and eosin (H&E) (ThermoFisher Scientific, Waltham, MA) to visualize the nucleic 

acids, extracellular matrix and other proteins in the tissue sections. The alcian blue 

stain (Electron Microscopy Sciences, Hatfield, PA) was also used in conjunction with 

H/E to detect cartilaginous regions. Subsequently, Wright-Giemsa (Electron 

Microscopy Sciences, Hatfield, PA) and Prussian blue (Electron Microscopy Sciences, 

Hatfield, PA) stains were used for further in-depth histological evaluation when 

inflammation was present to facilitate the differentiation of leukocytes and identify 

hemosiderin deposits, respectively. Transmitted and polarized light images were 

captured using an Olympus BX50 microscope (Olympus, Melville, NY, USA) 

equipped with a stepper motor-controlled stage, an elliptically polarized light 

imaging system, and a Jenoptik ProgRes Speed XT Core5 camera (Jenoptik, Jena, 

Germany). A 36-image (200X magnification) composite, that spanned the entire 

tissue section, was created for each section under transmitted light to grade tissue 

reactions by at least two individuals (SYV, MJS) using a scoring system scaled from 0 

to 3 (Table 3-2). The scoring criteria were based on the Oxford method that is 

presently used for grading total joint arthroplasty tissues for macrophage and 

lymphocyte inflammation, aseptic lymphocyte-dominated vasculitis associated 

lesion (ALVAL), and necrosis [8, 31], but modified to exclude ALVAL responses to 

metal wear debris and include hemosiderin deposition and vascularization, which 

are more predominant in spine tissue. This criteria allowed us to make semi-

quantitative comparisons to previous research using similar grading scales for 

periprosthetic inflammatory responses.  
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Table 3-2. Modified Oxford scoring criteria for grading biological responses in 

periprosthetic tissues of L-TDRs 

Score Necrosis Hemosiderin 
Innate 

Inflammation 
Vascularization 

  

Tissue 

Percent 

Area 

Tissue 

Percent Area 

Number 

of Cells 

Tissue 

Percent 

Area 

Number of  

Blood 

Vessels 

Tissue 

Percent 

Area 

0+ 0 0 0 0 0 0 

1+ 

Scattered 

or Isolated < 10 1-9 < 10 < 10 < 10 

2+ < 25 10-50 10-50 10-50 10-50 10-25 

3+ > 25 > 50 > 50 > 50 > 50 > 25 

3.3.4 Wear Particle Characterization 

For UHMWPE particle analysis, a 36-image (200X magnification) composite was 

created from each tissue section under polarized light that corresponded to the 

transmitted light tissue composites. Our polarized light microscopy enabled us to 

detect particles as small as 0.34 µm. In each individual image, UHMWPE wear 

particle number, size, and shape were determined by first using a customized image 

threshold operation programmed in MATLAB® (MathWorks Inc, Natick, MA, USA) 

followed by counting/measuring particles using NIH ImageJ (National Institutes of 

Health, Bethesda, MD, USA) (Figure 3-3). In brief, polarized light images were split 

into three eight-bit channels (red, green, and blue). Signal from blue channels were 

converted into masks based on a threshold value relative to the average signal 

intensity of  each  image.  All  images  were  visually  reviewed  to  ensure  that  false- 
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Figure 3-3. Representative images of L-TDR periprosthetic tissues with wear 
particles under polarized light (left) followed by thresholding for UHMWPE 

particles in MATLAB (right). 

positive signals from birefringent collagen or dust did not contribute to particle 

counts. The resulting particle number was then converted to number/mm2 area of 

tissue using a measured conversion factor of 3.887 µm/pixel. Initial validation of 

this technique was performed using an environmental scanning electron 

microscope (ESEM) to study histomorphologic changes and wear debris in 

periprosthetic tissues of THAs [3]. Particle size and shape were characterized by 

calculating the equivalent circular diameter (ECD) (Equation 3-1), aspect ratio 

(Equation 3-2) and perimeter-based-circularity (Equation 3-3); the use of these 

measurements for particle analysis was validated in an earlier study by Baxter et al 

[4] and compared to ASTM guidelines for particle characterization [1].  

𝐸𝐶𝐷 = √4 𝑥 𝐴(𝑝)/𝜋 

Equation 3-1. Equivalent circular diameter (ECD) (μm), where A(p) is the area 
of the particle, represents the diameter of a circle that occupies the same two 

dimensional surface area as the particle. ECD provides a standardized 
measure of particle size [30]. 
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𝐴𝑅 =
𝐿(𝑝)

𝑊(𝑝)
 

Equation 3-2. Aspect ratio (AR) (unitless), where L(p) is the particle length 
and W(p) is the particle breadth, represents the proportional relationship 

between  length and breadth. AR provides a standardized measure to classify 
the general form of particles (e.g. equant, acicular or fibrous) [30]. 

𝐶 =
4 𝑥 𝜋 𝑥 𝐴(𝑝)

𝑃2
 

Equation 3-3. Circularity (C) (unitless), where A(p) is the area of the particle 
and P is the perimeter, represents the degree (from 0 to 1) to which the 

particle is similar to a circle based on the smoothness of the perimeter. C 
provides a measure for both particle form and roughness [30]. 

3.3.5 Statistical Analysis  

 Descriptive statistics were used for evaluating wear debris-induced tissue 

responses, which were semi-quantitatively compared based on histology/tissue 

scores. When quantifying UHMWPE particle numbers, the total number of particles 

in all tissue sections for each patient was normalized to total tissue sectional area, 

minimizing the effect of region-specific heterogeneity of particle distribution 

(Figure 3-4). Size and shape measurements of particles were averaged for each 

patient when dectectable wear debris was present. To statistically compare 

UHMWPE particle number, ECD, perimeter, circularity, and aspect ratio between the 

two different bearing designs, the Mann-Whitney U-test was employed using IBM 

SPSS Statistics V22 software package (IBM Corporation, Armonk, NY, USA). 

Significance was based on p < 0.05. Because we were unable to detect statistical 

differences in particle measurements between the two bearing designs, fixed- and 

mobile-bearing patients were combined into a single contemporary L-TDR cohort 

before comparing it with the historical L-TDR cohort. To compare these two groups, 
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the Mann-Whitney U-test was used to test differences in UHMWPE particle number, 

circularity, and aspect ratio. Particle size measurements of ECD (mean, 2.71μm ± 

4.29) and perimeter (mean, 11.07μm ± 27.54) were not statistically analyzed 

because particles larger than 2 µm were not evaluated in the historical L-TDR 

cohort.  

  
Figure 3-4. Patient tissues with detectable wear debris had a heterogeneous 

distribution of particles as illustrated by significant debris in the lateral tissue 
from patient BHSP027 (left, 200X), but no debris in other regions of same 

tissue (right). 

3.4 Results 

3.4.1 Device Retrieval Analysis for Contemporary L-TDRs 

 The eight fixed-bearing L-TDRs (implantation time, 1-6 years; mean, 4.1 years) 

exhibited minor to moderate signs of implant damage after discounting iatrogenic 

markings that were induced inadvertently by the surgeon. All eight cores from the 

seven patients (100%) showed evidence of burnishing and mild abrasive scratching 

on the bearing surfaces (Figure 3-5). In addition, impingement was noted in two of 

eight implants (25%) from two different patients with malpositioning, and the 

respective components evidenced plastic deformation (Figure 3-5). Microscopic 

scratches of fan-shaped pattern were found on  the interior  of these  metallic  plates 
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Figure 3-5. Representative fixed-bearing L-TDR retrieval components (top). 
All fixed-bearing UHMWPE cores showed evidence of burnishing (green 

arrow) and mild abrasive scratching (blue arrow). Impingement was noted in 
two patients and the respective components evidenced plastic deformation 

(red arrow). 

and a glossy appearance on the polyethylene core, respectively. SEM images of the 

impinged regions showed a polished appearance in comparison to the as-

manufactured texture seen in non-impinged regions of the metallic plate (Figure 3-

6). The unidirectional and circumferential wear patterns seen on the endplates 

suggest the wear may have occurred during axial rotation and/or lateral bending of 
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Figure 3-6. Representative fixed-bearing retrieval with impinged regions on 
both endplates (black arrows). SEM images showed the impinged region on 

the metallic plate (lower right) had a smooth surface compared to the 
unimpinged region (upper right). 

the articulating surfaces. Lastly, all fixed-bearing retrievals showed no indications of 

fatigue wear or fracture of the polyethylene core. No abnormal surface deposits 

were observed by SEM/EDS analysis. XRF scans showed the metallic surface-

constituents on the interior of the endplates consistently matched CoCr ratios seen 

in ASTM F-75 cobalt alloy standards, and the exterior of plates consisted of weight 

compositions seen in commercially pure titanium.  

 The four mobile-bearing L-TDRs (implantation time, 2-3 years; mean, 2.7 years) 

exhibited minor signs of implant damage after discounting iatrogenic markings. Two 

of four mobile bearing cores showed signs of burnishing, pitting and mild scratching 

(Figure 3-7). Minor unidirectional scratches were present on the endplates from all 

patients.  There were no obvious signs of impingement on the metallic endplates. 

Analysis using SEM and EDS revealed no abnormal surface deposits on the metallic 

endplates. As expected, XRF scans consistently detected cobalt-chromium ratios 

matching ASTM F-75 cobalt alloy weight-standards in the interior of the endplates.   
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Figure 3-7. Representative mobile-bearing L-TDR retrieval components (top). 
Two of four patients with mobile-bearing UHMWPE cores showed evidence of 
burnishing, pitting (green arrow). Minor unidirectional scratches were noted 

on endplates from all patients (red arrow). 

3.4.2 UHMWPE Wear Debris from Contemporary L-TDRs & Biological Tissue 

Responses  

 Periprosthetic UHMWPE wear debris with corresponding macrophage 

infiltration was observed in five of seven patients with a fixed-bearing L-TDR and 

one of four patients with a mobile-bearing L-TDR. Generally, detectable wear debris 

was associated with low to moderate biological tissue responses as compared to 

tissues (controls) from L-TDR patients undergoing primary surgery (Figure 3-8). 

For the fixed-bearing L-TDR revisions, tissues from three of seven (43%) patients 
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Figure 3-8. Transmitted light images (left) and polarized microscopy (middle) of tissue sections revealed the 
presence of UHMWPE wear and corresponding macrophage infiltration; particles were characterized using a 

MATLAB threshold (right). 
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Table 3-3. Histologic evaluation and mean scores of retrieved tissues with wear debris 

Patient ID 

Implant 

bearing 

design 

Tissue 

samples 

with wear 

debris 

UHMWPE wear 

debris 

(particles/mm2) 

Metal 

wear 

debris 

Inflammation 

(macrophages) 

Type of inflammatory 

cells 
Necrosis Hemosiderin Vascularization 

BHSP 022 Fixed 2/4 4.27 No 0.5 Macrophages 1.0 0.5 0 

BHSP 023 Fixed 6/14 4.78 Yes 1.7 

Predominantly 

macrophages with 

lymphocytes and plasma 

cells 

0.9 1.2 1.3 

BHSP 025a Fixed 2/6 21.82 Yes 2.0 

Predominantly 

macrophages with 

lymphocytes and plasma 

cells 

1.5 2.0 2 

BHSP 025b Fixed 6/12 1.74 Yes 1.8 

Predominantly 

macrophages with 

lymphocytes and plasma 

cells 

0.0 1.7 2.5 

BHSP 027 Fixed 3/6 29.12 No 1.7 Macrophages 0.5 0.0 1.5 

BHSP 0032 Fixed 1/1 15.03 Yes 1.5 

Predominantly 

macrophages with 

lymphocytes 

1.0 0.0 2.5 

PDL 004 Fixed 1/3 20.91 No 0.0 None 1.0 0.0 0 

BRSP 003 Mobile 1/4 107.33 No 3.0 Macrophages 1.0 0.0 1 

Inflammation, necrosis, hemosiderin, and vascularization scores on a 0-3 scale. 
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Figure 3-9. Wright Giemsa and Prussian blue stains were used to identify inflammatory cells and hemosiderin 

deposits, respectively. Both fixed-bearing (left) and mobile-bearing (middle) tissues showed inflammatory 
infiltrates, but hemosiderin deposits were also found in fixed-bearing cohorts. There was no inflammation or 
hemosiderin present in control tissue (right) obtained from primary surgery (Original magnification x 400; 

inset, x 1000).
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contained at least 15 UHMWPE particles/mm2 with an associated macrophage 

infiltration score > 1.5 (Table 3-3).  Tissues from the two other patients (29%) 

contained < 5 UHMWPE particles/mm2 and a variable macrophage infiltration (0.5 

and 2). Tissues with UHMWPE wear debris from patients BHSP 023 and BHSP 025, 

who had their implants revised for malpositioning and device impingement, also 

had some isolated regions containing metal wear debris, lymphocytes, plasma cells, 

and hemosiderin that occupied > 10% of the total tissue area (Figure 3-9). Another 

tissue with UHWMPE wear debris from patient BHSP 0032 also contained metal 

particles and lymphocytes but no hemosiderin deposits. Patient PDL 004 had one 

tissue sample with an isolated area containing 21 UHMWPE particles/mm2 but no 

detectable inflammation. For the mobile-bearing L-TDR cohort, tissue that 

contained detectable UHMWPE wear debris (> 0.34 μm) was found in only one of 

four patients. None of the tissues associated with the mobile-bearing devices 

contained metallic debris, and none of the implants exhibited rim impingement.  A 

tissue sample from patient BRSP 003 contained 107 UHMWPE wear particles/mm2 

and it had a high macrophage infiltration score (3.0). For the fixed-bearing cohort, 

tissues with wear debris were consistently more vascularized with mean scores as 

high as 3 (range, 0-3), whereas necrotic/acellular regions were scarce (Figure 3-10). 

In contrast, the majority of tissue samples around the devices that did not contain 

detectable wear debris had low vascularity and more prominent regions of necrosis 

(mean necrosis score, 2) (Table 3-4).  Tissues around mobile-bearing devices, with 

or without detectable wear, were moderately vascularized with isolated necrotic 

regions. 
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Figure 3-10. Representative fixed-bearing L-TDR tissue images showed 

increased vascularization (top left) in tissues with wear debris and regions of 
necrosis (bottom left) in tissues without wear debris. Mobile-bearing L-TDR 

tissues had lower vascularization (top right) in tissues with wear debris and a 
mix of moderate vascularization and isolated necrosis (bottom right) in 

tissues without wear debris (Original magnification, x 400). 

3.4.3 Wear Particle Number, Size & Shape for Contemporary L-TDRs 

 In general, L-TDRs patient tissues collectively had limited wear debris and the 

majority were small (< 10 µm) with low aspect ratio and high circularity (Figures 3-

11, 3-12, 3-13). For the mobile-bearing L-TDR patient tissue with UHMWPE wear 

debris, particle  number  was  increased  by  87%  compared to  fixed-bearing  

patient tissues, and the particles were 11% rounder and 11% less elongated (Table 

3-5), but, with the number of samples available, these differences were not 

significant.  Qualitative  observations  revealed   the  area   percentage or   amount of  
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Table 3-4. Histologic evaluation & mean scores of retrieved tissues without 
wear 

Patient ID 

Implant 

bearing 

design 

Tissue samples 

without wear debris 
Necrosis Hemosiderin Vascularization 

BHSP 022 Fixed 2/4 0.5 0.5 0.0 

BHSP 023 Fixed 8/14 1.2 0.8 0.8 

BHSP 025a Fixed 4/6 2.0 0.0 0.0 

BHSP 025b Fixed 6/12 1.0 1.0 1.2 

BHSP 026 Fixed 4/4 0.8 0.8 1.0 

BHSP 027 Fixed 3/6 1.5 0.0 0.0 

PDL 004 Fixed 2/3 1.0 0.0 0.0 

BRSP 003 Mobile 3/4 0.7 0.0 1.0 

BRSP 004 Mobile 4/4 0.5 0.0 1.5 

BRSP 006 Mobile 6/6 0.7 0.0 1.3 

BRSP 007 Mobile 2/2 0.0 0.0 0.0 

Note: Necrosis, hemosiderin, and vascularization scores on a 0-3 scale. 

tissue occupied by particles from the mobile-bearing device was more extensive 

than the particles from fixed-bearing devices with the exception of tissues from 

patient BHSP 022, which contained large (> 10 µm) particles (highest ECD and 

perimeter values). Nonetheless, the overall distribution of particle sizes was similar 

for both cohorts. The majority of the particles were between 1 and 10 µm (75% and 

83% for the fixed- bearing and mobile-bearing L-TDR cohorts, respectively). 

Submicron particles (< 1 μm) represented 20% of the particles from fixed-bearing 

devices and 16% from the mobile-bearing device. Large particles (> 10 μm) were 

rarely observed and represented less than 2% of the particles in both cohorts. 
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Table 3-5. UHMWPE particle number and characteristics from tissues with wear debris 

*Percent area of particles is the ratio of the total area of all particles to the total area of tissue; † mean ± SD. 

Table 3-6. Comparing UHMWPE particle number and characteristics in patients with wear debris 

Comparison Fixed-Bearing L-TDR Mobile-Bearing L-TDR 
Contemporary L-TDR 

(Fixed and Mobile ) 
Historical Mobile-Bearing L-TDR* 

(Punt et al., 2011) [30] 

UHMWPE core γ-inert-sterilized γ-inert-sterilized γ-inert-sterilized γ-air-sterilized 

Patients with 
wear debris (number) 

6 of 7 1 of 4 7 of 11  5 of 5 

Particle number** 
(particles/g x 107; mean  ± SD) 

1.16 ± 3.09 8.99 2.14 ± 2.90†  162.10 ± 27.10 

Circularity (mean  ± SD) 0.78 ± 0.20 0.86 ± 0.15 0.80 ± 0.19† 0.40 ± 0.20 

Aspect ratio (mean  ± SD) 1.88 ± 0.76 1.70 ± 0.53 1.84 ± 0.71 2.00 ± 0.10 
*Particle measurements were generated using ESEM and a cutoff of 2 µm so size characteristics were not comparable; **Measurements from 

contemporary L-TDR cohorts were converted from particles/mm2 for comparison purposes; L-TDR = lumbar total disc replacement; SD = 
standard deviation; N/A = not available; ESEM = environmental scanning electron microscope. †Significant differences between combined 

contemporary L-TDRs and historical L-TDRs (p < 0.01) 

Patient ID 
Implant 
bearing 
design 

Tissue 
samples 

with wear 
debris 

< 0.1-1µm 
(particles/

mm2) 

1-10 µm 
(particles/

mm2) 

> 10 µm 
(particles/

mm2) 

All sizes 
(particles/

mm2) 

Percent 
area of 

particles* 

Equivalent 
circular 

diameter 
(µm) 

Perimeter 
(µm) 

Circularity Aspect ratio 

BHSP 022 Fixed 2/4 0.52 3.14 0.61 4.27 0.12% 6.64 ± 10.78 28.05 ± 47.09 0.74 ± 0.20 1.76 ± 0.54 

BHSP 023 Fixed 6/14 1.15 3.13 0.51 4.78 0.05% 2.68 ± 5.63 13.43 ± 39.45 0.67 ± 0.25 2.02 ± 0.99 

BHSP 025a Fixed 2/6 4.69 16.70 0.44 21.82 0.03% 2.90 ± 3.12 11.95 ± 19.13 0.76 ± 0.19 1.93 ± 0.74 

BHSP 025b Fixed 6/12 0.15 1.52 0.06 1.74 0.02% 2.60 ± 2.71 10.31 ± 15.69 0.80 ± 0.18 1.85 ± 0.67 

BHSP 027 Fixed 3/6 6.78 21.79 0.55 29.12 0.07% 2.86 ± 5.24 11.82 ± 38.18 0.80 ± 0.18 1.90 ± 0.77 

BHSP 0032 Fixed 1/1 2.55 10.57 1.28 15.03 0.06% 3.78 ± 4.65 8.43 ± 11.45 0.77 ± 0.20 1.87 ± 0.82 

PDL 004 Fixed 1/3 4.55 15.91 0.45 20.91 0.02% 2.28 ± 2.40 8.44 ± 11.43 0.86 ± 0.17 1.56 ± 0.44 

BRSP 003 Mobile 1/4 17.68 89.12 0.54 107.33 0.11% 2.23 ± 2.85 8.16 ± 14.11 0.86 ± 0.14 1.70 ± 0.53 
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3.4.4 Comparison of Wear Particle Characteristics to MoP Historical L-TDRs 

 Compared to five historical L-TDR patients identified in a previous study [32], 

UHMWPE particle number and circularity in the seven contemporary L-TDR patient 

tissues were significantly different, but aspect ratio was not (Table 3-6). Specifically, 

the number of particles per gram of tissue was 99% less (p = 0.003) and their shape 

was 50% rounder (p = 0.003) in contemporary L-TDR cohorts, which included both 

fixed- and mobile-bearing designs. Qualitative observations of particle size revealed 

that tissues from contemporary L-TDR patients contained more submicron and 

small (< 10 µm) wear debris and less associated inflammation in comparison to the 

historical L-TDR cohort. 

3.5 Discussion 

 L-TDR was developed as an alternative to spinal fusion for the treatment of 

degenerative disc disease in the lumbar spine, and is a device that preserves or 

restores segmental function and motion. However, historical generations of L-TDR 

devices with γ-air-sterilized UHMWPE cores raised concerns regarding wear debris 

generation and subsequent immunological responses that may adversely affect 

clinical outcomes. Today, modern L-TDR designs incorporate purely γ-inert-

sterilized UHMWPE cores to improve wear resistance and minimize wear debris 

generation in an effort to reduce the risk of revision surgery. The aims of this study 

were to evaluate wear debris and biological responses in tissues from revised 

contemporary MoP L-TDRs and determine the influence of bearing design on wear 

particle number, size, and shape. Furthermore, we wanted to know how UHMWPE 
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wear particle densities and characteristics compared with previous historical MoP 

L-TDRs.  After analyzing retrieved tissues around eight fixed- and four mobile-

bearing L-TDRs from 11 patients revised primarily for pain, we found measurable 

UHMWPE wear debris with corresponding macrophage infiltration in five patients 

that had fixed-bearing L-TDRs and one patient that had a mobile-bearing L-TDR. The 

frequency, amount, and shape of wear debris suggested the bearing design of 

contemporary devices did not influence wear particle characteristics. Furthermore, 

particle comparisons with a retrieval study of historical devices suggested that γ-

inert-sterilized UHMWPE has improved wear resistance and as a result reduced 

wear-induced periprosthetic tissue reactions.  

 Not all periprosthetic tissue from the two contemporary MoP L-TDRs examined 

in this study contained detectable UHMWPE wear debris (> 0.34 μm); this was true 

for tissues from all patients and different tissues from the same patient. However, 

those tissues that contained UHMWPE wear debris generally had an associated 

macrophage inflammation. This type of co-localization of wear debris and 

macrophages is an established phenomenon in total joint arthroplasty and more 

recently noted in historical L-TDRs [34]. One noteworthy difference observed for 

the contemporary L-TDRs was a decrease in particles > 10 um and as a result; unlike 

historical L-TDRs, giant cells were not observed in these tissues. Periprosthetic 

UHMWPE particles from both contemporary L-TDR cohorts resulted primarily in a 

macrophage response, except for three patients with metallic wear debris from 

fixed-bearing devices where an associated lymphocytic response was observed. 

These patient tissues also had higher macrophage infiltration scores. The presence 
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of metallic debris may be attributed to the unintended wear mechanism of 

impingement between the metallic endplates arising from malpositioning and/or 

subsidence, which was noted in more than 50% of contemporary fixed-bearing 

device retrievals in a separate retrieval study [23]. Interestingly, considerable 

amounts of hemosiderin were present in many of these tissues, indicative of 

phagocytosis of erythrocytes and degradation of hemoglobin by macrophages [16, 

39]. The exact contribution of hemosiderin to revision remains unclear; however, a 

previous study has associated the deposition with the accumulation of activated 

macrophages that are positive for osteoclastic cell markers [28]. Although the 

amount of UHMWPE wear debris in the spine may not be severe enough to directly 

contribute to osteolysis [21], vertebral osteolysis was noted as a clinical 

complication in two patients with fixed-bearing L-TDRs, both of whom had tissues 

containing hemosiderin. The effect of hemosiderin in these tissues on UHMWPE 

wear-induced inflammation requires further investigation. Other biological tissue 

responses noted around the fixed-bearing devices included increased 

vascularization in tissues with wear and necrosis in tissues without wear. In 

contrast, tissues around mobile-bearing L-TDRs, with and without detectable wear 

debris, had low to moderate vascularization and necrosis. The presence of these 

reactions in both cohorts is noteworthy because these reactions have been 

implicated in the development of pain. Specifically, increased vascularization and 

sensory nerve growth are closely linked processes [6, 27]; and tissue necrosis or cell 

death results in the release of proinflammatory cytokines and other factors that 

initiate persistent pain by directly activating nociceptive sensory neurons [7, 47]. 
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Both reactions can lead to maladaptive plasticity and neural disease states, which 

raises the question whether these tissue responses contributed to neuropathic pain 

in both fixed- and mobile-bearing L-TDR patients.  

 While the observations and data did not explain why wear debris in patients 

lead to vascularization in some tissues and necrosis in others, we believe the 

amount of wear debris and the stage of inflammation contributed to pathological 

modes observed at fixation. It is important to note that nanometre-sized wear 

debris may still be present in tissues that were indicated for no debris due to our 

detection limitations (>0.34 µm) [36]; and also that particles can be cleared by the 

lymphatic system when the tissue matrix degenerates [10]. Furthermore, apparition 

of the inflammatory modes of vascularization and necrosis can depend on the 

nature and extent of the injury (e.g. wear-debris amount and length of exposure), 

along with the locale and cell types present in the region [41]. For example, tissue 

sections that were excised from deeper discal regions with severe wear-induced 

hypoxic conditions may reflect inflammation that led to ischemic necrosis; 

contrarily, inflammation and wear-induced hypoxia in outer layers of the disc with 

access to ingrowing blood vessels may lead to vascularization and more 

inflammation [14, 38, 41]. Nonetheless, with enough time, it is thought that all wear-

induced tissue responses eventually lead to necrosis as inflammatory cells are 

unable to digest or enzymatically degrade UHMWPE wear particles [40].  

 UHMWPE wear debris in tissues around fixed-bearing devices qualitatively 

appeared smaller, less concentrated, and less round than debris in tissues around 
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the one mobile-bearing retrieval; however, no statistical difference was observed. 

Austen et al. recently reported a case study of two patients revised for a different set 

of fixed- and mobile-bearing contemporary L-TDRs, and observed larger UHMWPE 

particles in tissues from the patient with the mobile-bearing design [2]. 

Interestingly, retrieval studies of TKA also found comparable findings in which 

larger UHMWPE particles were found in tissues surrounding failed mobile-bearing 

TKRs than in tissues around failed fixed-bearing TKRs [11, 29]. Design-dependent 

differences in loading and wear mechanisms may explain observed qualitative 

differences of wear particles between designs. All fixed-bearing retrievals in our 

study showed signs of scratching on UHMWPE dome regions, and the tissues with 

metal wear corresponded with implant components that had metallic and endplate 

burnishing as a result of impingement attributable to malposition and/or 

subsidence. The mobile-bearing patient tissue retrieval with UHMWPE wear 

corresponded to an implant core that had burnishing, pitting, and unidirectional 

scratching. The overall density of UHMWPE particles was relatively low in tissues 

from both cohorts, but the majority were 1 to 10 µm, which falls within a size range 

that activates macrophages [9]. Lastly, the higher number and rounder particles 

observed in the mobile-bearing patient tissue may be influenced by the increased mobility 

of the core. The mobile-bearing implant design has 5 degrees of freedom (DOF) and its 

instant axes of rotation (IAR) more consistently matches the geometrical center of the 

UHMWPE core, whereas the fixed-bearing design has only 3 DOF and the IAR is not 

always as centered [37]. The differing kinematics of bearing design likely contribute to 

the different wear mechanisms that generate distinct particle amounts and morphology. 



81 
 

 

However, further research and larger sample sizes are necessary to determine 

whether design-dependent differences significantly influence particle size and 

shape differences.  

 UHMWPE particles from the contemporary L-TDR cohorts were less numerous 

and rounder in comparison to the historical L-TDR group, suggesting that modern L-

TDR designs have improved wear properties. A separate study investigating 

particles > 2 µm in historical L-TDR cohorts reported a mean of 231 particles/mm2 

[33], which was roughly 10-fold higher than the amount of similar-sized particles 

from contemporary TDRs (mean, 22 particles/mm2). This comparison paralleled 

findings from a case report, which noted that the mean number of UHMWPE 

particles was two orders of magnitude lower in a different set of revised 

contemporary L-TDRs [2]. Our study also showed that mean particle circularity 

(roundness) was noticeably higher in the contemporary L-TDR cohort (mean, 0.8 

versus mean, 0.4), but aspect ratios were within the same range as those of 

historical L-TDR particles [32]. Interestingly, UHMWPE particles from conventional 

THAs fabricated with γ-inert-sterilized UHMWPE acetabular liners have been 

reported to have shapes similar to the contemporary L-TDR group [4, 12, 13, 15, 

26]. Multiple studies have reported that particles with more rounded morphologies 

trigger less robust macrophage activation compared with fibrillar-shaped particles 

[13, 35, 46]. Thus, with the samples available in this study, both the decreased 

number and increased roundness of the particles suggest that wearing of 

contemporary L-TDRs will result in a reduced inflammatory response.  
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 In summary, the amount of wear debris and subsequent tissue responses were 

greatly reduced in tissues from contemporary L-TDRs when compared to historical 

L-TDRs. We showed that periprosthetic tissues from both fixed- and mobile-bearing 

L-TDR patients contained UHMWPE particles within size ranges known to elicit a 

macrophage response. Because artificial discs are intended to last the lifetime of the 

patient, further retrieval studies are still necessary to elucidate the long-term role of 

UHMWPE wear and its association, if any, to the clinical performance of lumbar disc 

arthroplasty.  

3.6 Study Limitations 

 As any retrieval study, a few important limitations need to be noted. First, 

although the primary revision reason for all patients was pain, implant 

malpositioning and impingement were reported in three of six fixed-bearing and 

none of the mobile-bearing L-TDR patients. This complication may serve as a 

confounding variable when comparing the two designs. However, this discrepancy 

between the two cohorts may be viewed with a little skepticism given that the issue 

of impingement is not an uncommon finding for L-TDRs; it was previously reported 

for mobile-bearing L-TDR retrievals as well and contributed to wear debris 

generation and the immune responses [5]. Second, we were only able to investigate 

short-term revisions within 5 years of implantation, and of these retrievals, the 

implantation times varied between the fixed- and mobile-bearing cohorts. The times 

ranged from 1 to 6 years (mean, 4.1 years) for the fixed-bearing cohort and 2 to 3 

years (mean, 2.7 years) for the mobile-bearing cohort, although both cohorts were 
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short-term revisions. Third, the cohort sizes were small and wear particle 

characteristics of mobile-bearing devices were extrapolated from particles that 

were observed in only one of four patients who had wear debris. Nevertheless, to 

our knowledge, there are no published retrieval studies for contemporary MoP L-

TDRs. Lastly, comparisons of particle number and characteristics are provided for 

historical MoP L-TDRs; however, the previous study used ESEM and excluded wear 

particles larger than 2 µm, whereas in this study, we used polarized light 

microscopy and were able to detect particles as small as 0.34 µm. Although 

polarized light microscopy has been used in other related studies to investigate 

UHWMPE particles of particular sizes [33, 34], the different approaches make it 

difficult to make direct comparisons.  
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CHAPTER 4 

Periprosthetic Immune Response to UHMWPE Wear Particles and 

Inflammatory Factor Production in the Lumbar Spine 

4.1 Abstract 

 The pathophysiology and mechanisms driving the generation of unintended 

pain after TDR are poorly understood. It has been suggested that pain may be the 

result of UHMWPE wear debris and the resulting periprosthetic inflammation. We 

therefore asked whether inflammation could be linked to wear debris generation 

and the production of inflammatory factors that might contribute to abnormal or 

enhanced pain sensitization. Tissues were evaluated for three patient groups: 

periprosthetic tissue samples (n=30) obtained at revision of contemporary metal-

on-UHMWPE TDRs from 11 patients (implantation time 1.2-6.0 year, average 3.3 

year); painful degenerative disc disease (DDD) tissue samples (n=3) obtained from 

patients exhibiting pain at the time of initial TDR surgery; and normal disc tissue 

samples (n=4) obtained at autopsy from patients with no clinical history of back 

surgery. The wear particle number and size/shape characteristics were determined 

in tissue sections from TDR patients and immunohistochemistry was performed to 

identify CD68+ macrophages and the production of tumor necrosis factor-α (TNFα), 

interleukin-1ß (IL-1ß), vascular endothelial growth factor (VEGF), platelet-derived 

growth factor-bb (PDGFbb), nerve growth factor (NGF) and substance P, 

inflammatory factors known to play both a direct and indirect role in inflammatory-
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mediated pain sensitization. Clinical and implant factors did not show any 

correlation with the expression of these factors. However, the amounts of TNFα IL-

1ß, VEGF, NGF and substance P strongly correlated with the number of wear 

particles and also the number of CD68+ macrophages for the TDR patient group. 

Furthermore, the cytokines, TNFα and IL-1ß, and the vascularization factors, VEGF 

and PDGFbb, correlated with the presence of the neural innervation and 

hypersensitization agents, NGF and substance P, suggesting inflammation can 

contribute to pain sensitization. 

4.2 Introduction 

The pathophysiology of low back pain remains poorly understood [25], and 

even less is known about mechanism(s) involved in the generation of unintended 

pain after metal-on-UHMWPE total disc replacement (TDR). The normal human 

lumbar disc consists of an avascular/aneural nucleous pulposus, and a surrounding 

annulus fibrosis that is poorly vascularized and innervated [22]. Painful disc 

degeneration has been associated with an infiltration of inflammatory cells, as 

resident macrophages are not present, and responses leading to innervation by 

sensory nerve fibers, which follow the path of ingrowing blood vessels into disc 

tissue [6, 11]. This process is mediated by both activated fibroblasts and 

inflammatory cell infiltrates that release biological factors that may ultimately lead 

to pain sensitization. In a previous study, we reported an increase in inflammation 

and vascularization in TDR revision tissues [37]. Thus, it was hypothesized that 

biological reactions to UHMWPE wear debris in the lumbar spine result in the 
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production and interplay between key inflammatory mediators that contribute to 

the abnormal or enhanced pain sensitization in TDR patients.  

Studies have suggested that there is a functional link between the immune 

response and neurological changes that ultimately result in the generation of 

peripheral pain. Specifically, activated macrophages, derived from circulating 

monocytes, have been reported to contribute to experimental pain states by 

releasing pro-inflammatory cytokines such as TNFα and IL-1β [23, 30, 34]. In 

addition, these cells can secrete the angiogenic factors, VEGF and PDGFbb, and the 

neurotrophic factor and neuropeptide, NGF and substance P. Investigations on 

painful degenerative discs have identified a significant increase in the production of 

these factors in both the nucleus pulposus and annulus fibrosis [19, 38].  

It is important to note that TNFα and IL-1ß are not only potent stimulators of 

pro-inflammatory reactions in the disc space, but both have the potential to induce 

neural ingrowths into the disc and mediate hypersensitization by upregulating the 

expression of factors like NGF and substance P [2]. In addition, TNFα and IL-1ß can 

directly stimulate pain by acting on nociceptors, sensory neurons that respond by 

sending signals to the brain that initiate the perception of pain [33, 42]. 

Furthermore, TNFα and IL-1ß have been shown to induce angiogenesis by 

stimulating the release of factors like VEGF, PDGFbb and fibroblast growth factor 

(FGF) [6, 35]. While the underlying mechanisms of vascular ingrowth remain 

unclear, VEGF can promote blood vessel expansion into the disc space and 
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subsequently enhance innervation as the growing vessels provide a conduit for 

ingrowing neurons [26]. Thus, it is feasible that all of these cytokines play a role in 

the peripheral mediation of the unintended neuropathic pain experienced in some 

patients after disc replacement. Identifying their presence in the context of wear-

debris-induced inflammatory reactions of the lumbar spine could provide valuable 

insights into the mechanisms that contribute to the unintended pain in some TDR 

patients.  

In this study, we evaluated periprosthetic tissues collected at the time of TDR 

revision surgery using immunoshistochemistry (IHC) to quantify the levels of select 

inflammatory factors that are known to play a major role in inflammation, 

vascularization and inflammatory-mediated pain/innervation, and investigate their 

associations with wear debris and macrophages. The inclusion criteria for the 

factors focused on identifying secretory proteins that are known to be involved in 

both direct and indirect mediation of pain, and included TNFα, IL-1ß, VEGF, PDGF-

bb, NGF and substance P. Understanding the inflammatory responses and factors 

present in TDR periprosthetic tissues with and without detectable UHMWPE wear 

debris will enable us to discover mechanistic pathways that may link wear particles 

to pain sensitization. It will also provide information needed to identify therapeutic 

targets and treatment strategies to mitigate chronic pain after TDR.  

4.3 Materials & Methods 

4.3.1 Tissue Collection & Patient Information  
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 Tissues were evaluated from three patient groups: periprosthetic tissue 

samples (n = 30) from TDR patients (see Chapter 3.3.1 and Table 3-1), tissues 

samples obtained from patients with disc degenerative disease (n = 3) exhibiting 

pain at the time of initial TDR surgery, and intervertebral disc (IVD) tissue samples 

(n = 2) obtained at autopsy from normal patients with no clinical history of back 

surgery or lower back pain. Periprosthetic revision and initial TDR surgical tissues 

were collected as part of a public, multi-center retrieval research program initiated 

in 2004 [16, 17]. Normal IVD tissues samples were obtained from the Cooperative 

Human Tissue Network (CHTN) of the National Cancer Institute (NCI), the National 

Institutes of Health, Bethesda, MD (http://faculty.virginia.edu/chtn-

tma/home.html). Additional IVD tissue samples were obtained from the Life Legacy 

Foundation (Tucson, AZ). Visual analog scale (VAS) pain scores and other 

demographic data was collected when available (Table 4-1). 

4.3.2 Tissue Preparation  

   Tissues collected from revision surgeries, primary surgeries for treatment of 

DDD and autopsy were fixed in either formalin or Universal Molecular Fixative 

(UMFIX; Sakura Finetek USA, Inc, Torrance, CA, USA). One to two 4-mm punches 

from each tissue, considering variations in color, texture, and size of specimen, were 

embedded in paraffin blocks, and 6-µm serial sections were mounted onto 

ProbeOnPlus (Fischer Scientific Co, Pittsburgh, PA, USA) slides. 

 

http://faculty.virginia.edu/chtn-tma/home.html
http://faculty.virginia.edu/chtn-tma/home.html
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Table 4-1. Clinical Information of Patient Cohorts  

Patient ID Tissue Type Device Bearing 

design 

Sex Age  Implantation 

Time 

(years) 

VAS Score 

BHSP 022 Periprosthetic ProDisc-L Fixed Male 36 5.0 N/A 

BHSP 023 Periprosthetic ProDisc-L Fixed Male 53 3.0 N/A 

BHSP 025a 

BHSP 025b 

Periprosthetic ProDisc-L 

ProDisc-L 

Fixed 

Fixed 

Male 45 4.0 N/A 

BHSP 026 Periprosthetic ProDisc-L Fixed Female N/A N/A N/A 

BHSP 027 Periprosthetic ProDisc-L Fixed Female 28 5.0 N/A 

BHSP 0032 Periprosthetic ProDisc-L Fixed Male 40 6.0 N/A 

PDL 004 Periprosthetic ProDisc-L Fixed Female 25 1.3 N/A 

BRSP 003 Periprosthetic CHARITÉ Mobile Male 26 1.5 8 

BRSP 004 Periprosthetic CHARITÉ Mobile Female 18 3.3 7 

BRSP 006 Periprosthetic CHARITÉ Mobile N/A N/A 2.7 5 

BRSP 007 Periprosthetic CHARITÉ Mobile N/A N/A 3.3 10 

BRSP Pri 002 DDD   N/A N/A  9 

BRSP Pri 003 DDD   F 34  8 

BRSP Pri 004 DDD   F 31  7 

CHTN 38422T IVD   F 55  0 

CHTN 55035T IVD   M 42  0 

LLF I IVD   N/A N/A  0 

LLF II IVD   N/A N/A  0 
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4.3.3 Wear Particle Analysis  

For UHMWPE particle analysis, hematoxylin and eosin (H&E) (ThermoFisher 

Scientific, Waltham, MA) stained tissue sections were evaluated for wear debris (see 

Chapter 3.3.4). In brief, a 36-image (200X magnification) composite was created 

from each tissue section under polarized light that corresponded to the transmitted 

light tissue composites. In each individual image, UHMWPE wear particle number, 

size, and shape were determined by first using a customized image threshold 

operation programmed in MATLAB® (MathWorks Inc, Natick, MA, USA) followed by 

counting/measuring particles using NIH ImageJ (National Institutes of Health, 

Bethesda, MD, USA). Equivalent circular diameter (ECD), aspect ratio and circularity 

measurements were calculated to determine particle size and shape (as described in 

Chapter 3.3.4). 

4.3.4 Immunohistochemistry  

 Immunohistochemistry was performed on prepared slides to evaluate the 

expression of six secretory factors and a pan-macrophage marker: pro-

inflammatory cytokines, TNFα (Rabbit IgG, Novus Biologicals, NBP1-19532) and IL-

1ß (Rabbit IgG, Abcam, AB2105); vascularization factors, VEGF (Rabbit IgG, 

SantaCruz, sc-507) and PDGFbb (Rabbit IgG, Abcam, ); pain-related factors, NGF 

(Rabbit IgG, Abcam, AB6199) substance P (Rabbit IgG, EMD Millipore, AB1566); and 

macrophage marker, CD68 (Rabbit IgG, Abcam, AB125157). Optimal conditions for 

the inflammatory and pain-related antibodies were determined using periprosthetic 

tissues of total hip replacement patients that had severe pain and wear debris; 
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mouse kidney tissues for the vascularization factors; and human tonsil tissue for the 

macrophage marker. The antibody concentrations were: TNFα 1:100, IL-1ß 1:400, 

VEGF 1:100, PDGFbb 1:100, NGF 1:500, substance P 1:500 and CD68 1:100. Slides 

with tissues originally fixated in formalin, as opposed to UMFIX (Sakura Finetek, 

Torrance, CA), were first treated with an antigen retrieval solution (Vector Labs). All 

slides were incubated in 0.5%Triton in PBS to enhance permeability, 3% H2O2 in 

methanol to block endogenous peroxidases, and to block non-specific background in 

4% BSA, 0.1% Tween 20 in PBS. Lastly, slides were incubated at 4 °C overnight with 

the primary antibodies. For antibody visualization, samples were incubated with 

pan-specific secondary antibody, followed by horseradish peroxidase (Santa Cruz 

Biotech) and DAB solution (Vector Labs), and then counterstained with 50% 

hematoxylin.  

 In an attempt to identify macrophage phenotype subsets, M1, M2a and M2c 

cells, the monoclonal antibodies CCR7 (Rat IgG, Origene, TA320232), CD206 (Mouse 

IgG, Abcam, AB8919) and CD163 (Rabbit IgG, Labome, MBS302586) were employed. 

However, these antibodies failed to recognize their intended targets in the TDR 

revision tissues despite multiple trails with both immunofluorescent and chromgen-

based staining techniques. We believe the detection was not possible because these 

proteins are minimally expressed or not present in TDR tissues.   

4.3.5 Imaging & Analysis  

Each stained tissue section was imaged (200X objective) using an Olympus 

BX50 microscope (Olympus, Melville, NY, USA) equipped with a stepper motor-

controlled stage. DAB expression was determined by first employing a customized 
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image threshold operation programmed in MATLAB® (MathWorks Inc, Natick, MA), 

followed by measuring area via NIH ImageJ (National Institutes of Health, Bethesda, 

MD). In brief, the red, green and blue channels for the 24-bit bright field DAB-

labelled images were normalized by the sum of the three channels. Pixel values for 

8-bit images were calculated using a published formula that allows for maximal 

separation of DAB-stained pixels from the background tissue: 

255*blue/(red+green+blue) (Figure 5-1) [8]. See Appendix 1B for MATLAB script. 

   
Figure 4-1. Representative image of a tissue with DAB deposition after 

immunohistochemistry (left) followed by thresholding for DAB-stained pixels 
in MATLAB (right). 

CD68+ macrophages were quantified in each image (200x) of the stained 

tissue sections with the aid of Image-Pro Plus 6.0 (Media Cybernetics, Silver Spring, 

MD, USA). A customized macro was generated to count DAB-stained cells. A 

quantitative value of the inflammatory response was then presented as the number 

of positive cells (DAB) was normalized to total area. In brief, images were split into 

three eight-bit channels (red, green, and blue). Signal from blue channels were 

converted into masks based on a threshold value relative to the average signal 
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intensity of each image. Next, count/size operations were employed along with 

water-shed split commands in order to maximize accuracy of counts. See Appendix 

3-1 for macro.  

4.3.6 Statistical Analysis  

The normality of the data was determined using Shapiro-Wilk test (IBM SPSS 

Statistics V22 software package, IBM Corporation, Armonk, NY, USA). To statistically 

compare immunohistochemical levels between different patient groups, the Mann-

Whitney U-test was employed. Significance was based on P < 0.05. Correlations for 

wear debris, inflammatory cells and the six immunohistological markers were 

determined using Spearman Rho correlation test for non-parametric data. 

Significance was based on P < 0.05. 

4.4 Results 

4.4.1 Mean Inflammatory Factor Expression in Patient Tissues 

 The levels of six inflammatory-associated secretory factors, TNFα, IL-1ß, VEGF, 

PDGF-bb, NGF and substance P, were evaluated in TDR revision tissues and 

compared to levels in DDD patient tissue samples retrieved at the time of initial TDR 

surgery, as well as IVD tissue samples from autopsy patients with no history of back 

surgery or lower back pain (Figure 4-2). Percent area of expression for each factor 

was determined based on the amount of DAB (pixels per total tissue area (mm2) in 

each section.  
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Figure 4-2. Mean expression of inflammatory factors in tissues for TDR, DDD 

and normal IVD patients. *p<0.05 

 

Figure 4-3. Mean expression of inflammatory factors in TDR tissues with 
(n=14) and without (n=16) wear debris, DDD and normal patient tissues. 

*p<0.05 
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 We found that the mean percent area of expression for IL-1ß (p = 0.01), VEGF (p 

= 0.04), and substance P (p=0.01) were significantly higher in TDR tissues when 

compared to tissues obtained from DDD patients. TNFα (p = 0.06) and NGF (p = 0.19) 

were also increased in the TDR patient tissues. When compared to normal, IVD, 

tissues, the mean percent area for all six factors, TNFα, IL-1ß, VEGF, PDGFbb, NGF 

and substance P, were statistically increased in TDR tissues (p < 0.05). Interestingly, 

no statistical differences were observed between DDD and normal IVD tissues.  

 To further evaluate differences in the tissue cohorts, TDR tissues were separated 

into sections that had detectable (> 0.34 µm) UHMWPE wear particles (n = 14) and 

sections that did not (n = 16). The expression of all of the factors, except PDGFbb, 

was significantly higher (p < 0.05) in TDR tissues with UHMWPE wear particles 

(Figure 4-3). Overall, TDR patient tissues with detectable wear debris had the 

highest expression of each factor compared to the DDD and IVD patient cohort 

tissues. 

4.4.2 Mean Inflammatory Factor Expression in Tissues from TDR Patients and 

Associations with Patient Clinical and Implant Factors  

 As patient, clinical and implant factors may contribute to the overall biological 

response, associations with the inflammatory secreted factors were investigated. 

Five male revision patients did not express any significant differences in mean 

percent area of expression for the six inflammatory factors when compared to the 

four female patients (Figure 4-4A). Next, implant complications of malpositioning, 

subsidence, dissociation and/or migration were noted in five revision patients, but 

there  was  no relationship  with  the factors when compared to the  seven other 

TDR  patients  with  no  reported  complications  (Figure 4-4B).  Based on short-term 
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Figure 4-4. Gender (A) and implant complications (B) showed no significant 

association with inflammatory factors. 

 Figure 4-5. Implantation time showed no significant association with 
inflammatory factors. 

to mid-term TDR revision patients, ranging from 1.3 years to 6.0 years of 

implantation, increasing implantation times also failed to correlate with the percent 

area expression of these factors (Figure 4-5). Similarly, other available clinical and 

implant information on patient demographics such as age and implant design (fixed- 
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versus mobile-bearing cores) did not show any association with the expression of 

these factors (not shown). 

4.4.3 Correlations between the Amount of Wear Debris and Inflammatory 

Factors in TDR Tissues 

 
Figure 4-6. Representative tissue sections with wear debris (left, polarized 

light) and TNFα immunostaining (right). The blue arrows indicate wear 
particles and the red arrow a macrophage surrounded by TNFα expressing 

fibroblasts. 

 To determine whether UHMWPE wear particle accumulation affected the six 

inflammatory factors, particle number per tissue section was compared to the amount of 

each factor. In general, tissues that contained wear debris also showed substantially 

increased amounts of the inflammatory factors (Figure 4-6). The quantity of wear debris 

showed a significant and moderately positive correlation to the percent area of both 

TNFα and IL-1ß (p < 0.001, ρ = 0.63; P = 0.015, ρ = 0.50; Figure 4-7). Both factors 

were expressed at substantially lower levels when no particles were present, with the 

exception of highly necrotic tissues (statistical outliers). Comparisons to VEGF and 

PDGFbb expression revealed the amount of wear debris showed a significant and 

moderately  positive  correlation  with  VEGF  (p =  0.003, ρ  =  0.56,),  but  not PDGFbb  
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Figure 4-7. UHMWPE wear debris correlated with TNFα & IL-1ß 

 
Figure 4-8. UHMWPE wear debris correlated with VEGF. 
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         Figure 4-9. UHMWPE wear debris correlated with NGF and SP. 

(Figure 4-8). Nonetheless, both factors were expressed at lower levels when no particles 

were present in the tissues. Lastly, comparisons to NGF and susbstance P expression 

showed the amount of wear debris had a significant and positive correlation with both 

factors, respectively (p = 0.012, ρ = 0.46; p < 0.001, ρ = 0.59; Figure 4-9).   

4.4.4 Correlations between Wear Debris Characteristics and Inflammatory 

Factors in TDR Tissues 

 To determine whether UHMWPE wear particle size and shape affected the six 

inflammatory factors, mean measurements for particle ECD, aspect ratio and circularity, 

in each tissue section with detectable wear debris, were compared to inflammatory factor 

expression. Mean values for the wear particle size and shape showed no significant 

correlation with any of the factors, with the exception of mean particle aspect ratio to the 

percent area of TNFα (p < 0.001, ρ = 0.71, Figures 4-10 A-C). 
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Figure 4-10. Particle ECD means did not correlate with any factor expression 
(A). Particle aspect ratio means correlated with TNFα (B).  Particle circularity 

means did not correlate with any factor expression (C). 
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4.4.5 Correlations between Wear Debris, Inflammatory Factors and the 

Number of Macrophages  

Figure 4-11. Representative tissue sections with wear debris (left) and CD68+ 
macrophages (right). The blue arrows indicate wear particles and the red 

arrows macrophage. 

 To investigate the presence and influence of macrophages during the immune 

response to wear particles in TDR tissues, the number of CD68+ cells in each tissue 

section was compared to particle accumulation and inflammatory factor amounts in serial 

sections. The majority of sections that contained wear particles also showed localized 

macrophage infiltration (Figure 4-11). The number of CD68+ cells showed an expected 

significant and strong positive correlation to the number of detectable wear particles 

(Figure 4-12). In addition, the number of CD68+ cells had a significant and strong 

positive correlation to the amount of TNFα and IL-1ß in these tissues (p < 0.001, ρ = 

0.85; p = 0.001, ρ = 0.69; Figure 4-13).  The number of CD68+ cells also showed a 

significant and strong positive correlation to VEGF (p = 0.001, ρ = 0.71), however there 

was a poor relationship with PDGFbb (p = 0.090, ρ = 0.40) (Figure 4-14). Lastly, the 

number of CD68+ cells showed a significant and positive correlation to NGF and 

substance P (p = 0.003, ρ = 0.63; p = 0.002, ρ = 0.65; Figure 4-15). 
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Figure 4-12. UHMWPE wear debris strongly correlated with CD68+ 

macrophages. 

 
Figure 4-13. CD68+ cells correlated with TNFα and IL-1ß. 
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Figure 4-14. CD68+ cells correlated with VEGF, but not PDGFbb. 

 
Figure 4-15. CD68+ cells correlated with NGF and substance P. 
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4.4.6 Correlations of NGF and Substance P with Other Factors 

 
Figure 4-16. Representative inflamed tissue samples from serial sections 

immunostained for NGF and substance P (left) that matched proportionally 
with inflammatory and vascularization factors (right). The red arrows 

indicate a macrophage positive for the respective immunostain. 

The amounts of the inflammatory, neural innervation agents and pain 

mediators, NGF and substance P, were identified in TDR tissues and their 

associations with pro-inflammatory and vascularization factors were determined 

(Figure 4-16). Both NGF and substance P showed statistically significant 

correlations with the amounts of TNFα, IL-1ß, VEGF and PDGFbb (p < 0.01 for all; 

Figure 4-17). NGF had a strongly positive relationship with the TNFα and IL-1ß (ρ = 

0.77; ρ = 0.79), while substance P had a strongly positive relationship with the 

vascularization factor, VEGF (ρ = 0.77).  
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Figure 4-17. Spearman Rho correlations for NGF & SP. 

4.5 Discussion 

 To better understand the pathophysiology and mechanisms of unintended 

pain after TDR, we investigated whether inflammation could be linked to wear 

debris generation and the production of inflammatory factors that could contribute 

to abnormal or enhanced pain sensitization. Inflammatory factors that promote 

inflammation, vascularization, pain and innervation were all elevated in TDR 

periprosthetic tissues when compared to tissues from DDD patients and IVD tissues 

from normal autopsy patients with no history of lower back pain. While no 

association was found between these factors and patient clinical/implant factors, 

TNFα IL-1ß, VEGF, NGF and substance P correlated with the number of wear 

particles and also the number of CD68+ macrophages in the TDR tissue sections. 

Furthermore, the pro-inflammatory cytokines, TNFα and IL-1ß, and the 

vascularization factors, VEGF and PDGFbb, correlated with the neural innervation 

and hypersensitization agents, NGF and substance P suggesting not only the 



109 
 

presence of inflammatory reactions but also the presence of factors that can directly 

and indirectly contribute to pain at periprosthetic sites.  

Although the inflammatory pain factors showed no associations with any 

patient demographic information, clinical indications or implant factors, these 

findings may be an artifact of low sample size and power of study. Both gender and 

implant complications were expected to show at least some association with the 

inflammatory pain factors. In regards to gender differences in pain perception, 

recent studies clearly suggest men and women differ in both pain perception and 

how they respond [1, 13]. In the context of low back pain, women present with 

symptoms more frequently, undergo spine surgery more commonly [1], and  report 

higher levels of back pain than men [7, 18]. However, this was not evident in our 

study cohort, which was again limited by sample size and also the availability of VAS 

scores. Limited sample size may have also contributed to the non-associations with 

implant factors such as malpositioning that can not only lead to severe wear debris 

generation [5], but can also physically impinge upon neighboring nerve roots [41]. 

Both of these outcomes can lead to the development of pain. Unfortunately, 

malpositioning is often unreported by the surgeon [12], which may explain why 

patients with implant complications had similar inflammatory pain factor 

production compared to patients not indicated for any complication. Nonetheless, it 

is also possible the non-associations of the inflammatory factors with patient and 

clinical factors simply adds weight to the associations we observed for TDR tissue 

biological responses and wear debris. 
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While TDR tissues do not contain resident macrophages and are initially 

poorly vascularized, the generation of wear debris increased the infiltration of 

CD68+ macrophages. Past studies on hips and knees have suggested these changes 

are initiated by wear debris activation of fibroblasts. Tunyogi-Csapo and colleagues 

(2007) found that fibroblasts in periprosthetic tissues from joint replacements 

secrete pro-inflammatory cytokines in response to particulate wear as well as the 

angiogenic factors, VEGF and fibroblast growth factor [35]. Moreover, the 

production of pro-inflammatory factor-recruitment of peripheral blood monocytes 

and the production of angiogenic factors lead to extensive vascularization of 

periprosthetic hip tissue [14, 35]. While we hypothesized a similar upregulation of 

angiogenic factors, only VEGF was significantly increased and associated with the 

number of wear particles. Although increases in PDGFbb were observed when 

particle number was high. Based on the high ratio of VEGF to PDGFbb we believe the 

pro-inflammatory M1 macrophage responses predominate rather than M2 

macrophage response [29, 32]. 

It is well accepted from joint arthroplasty studies that UHMWPE particles can 

activate cells, including fibroblasts, to secrete TNFα, which can induce subsequent 

IL-1ß secretion, and together these factors can synergistically contribute to the 

recruitment and polarization of macrophages towards the M1 phenotype [21, 29]. 

Accordingly, our previous work showed an increased infiltration of macrophages in 

TDR tissues containing wear particles [37]. In support of these findings, the current 

study showed increased expression of both TNFα and IL-1ß, which correlated with 

the number of wear particles and inflammatory cells. Particle size and shape have 
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been previously reported to influence biological reactions as well [37], however 

only the aspect ratio of the particles in our study showed a significant relationship 

with TNFα. This may however be due to our limited range (> 0.34 µm) of particle 

size detection capabilities. 

While the current study is the first to identify vascularization and 

neurological factors in TDR periprosthetic tissues, a number of DDD studies have 

reported the presence of pro-inflammatory factors, blood vessel ingrowth and nerve 

ingrowth into layers of the disc, which are thought to result in chronic lower back 

pain [6, 11, 24, 27]. Specifically, NGF-expressing blood vessels have been detected 

and co-localized to sensory nerve fibers in the annulus fibrosis and even deeper into 

the nucleus pulposus of the spinal disc [11]. These nerve fibers are known to 

produce neurotransmitters, including substance P, involved in pain transmission 

[4]. Activated macrophages can further exacerbate the condition by signaling the 

release of more neurotrophins and neuropeptides by neighboring macrophages and 

neurons [2]. Purmessur et al. (2008) have shown in vitro that TNFα stimulation of 

normal cells from the IVD increases the production of susbstance P, whereas IL-1ß 

stimulation increases NGF [28]. Altogether, the current findings, combined with 

previous research, suggest a possible signaling cascade starting with fibroblast 

activation, macrophage infiltration, increased vascularization and 

innervation/nociception (pain response to inflammation and tissue damage).   

The importance of NGF and substance P production in periprosthetic tissues 

is 2-fold. First, NGF is a known mediator of sensory and nociceptive nerve function 

and substance P is a sensory pain-associated neuropeptide released at synapses; 
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thus, both contribute to hyperalgesia (increased sensitivity to pain) [3, 20, 40]. 

Second, NGF can contribute to nerve ingrowth [2, 9, 15], and without it, all sensory 

neurons will undergo apoptosis [10]; substance P is also involved in nerve ingrowth 

and is predominantly secreted at sensory nerve endings during innervation [39]. 

Both factors work in synergy and may be directly involved in mediating innervation 

and pain in the lower back [31, 36]. Taken together, the association with wear-

debris induced inflammation elucidates key mechanisms that may be involved in the 

development of pain in TDR patients. 
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CHAPTER 5 

Investigations into the Pathogenesis of Inflammatory Particle 

Disease in the Lumbar Spine based on Localized Changes in 

Vascularization & Innervation 

5.1 Abstract 

The mechanisms involved in the generation of unintended pain after metal-

on-UHMWPE total disc replacement (TDR) remain poorly understood. While wear-

debris and subsequent inflammation have been established in this dissertation as the 

biological response to UHMWPE wear particles, increased vascularization is another 

key histomorphological change that may provide the link to pathological innervation 

and ultimately pain sensitization. Our hypothesis was that ingrowth of blood vessels 

may provide a conduit for nociceptive innervation. Thus, the aim of this study was to 

explore the contributions of a neurovascular component in wear-debris-triggered 

tissue responses. We evaluated the expression of six inflammatory factors in tissue 

sections from eleven TDR patients and their association with tissue vascularity using 

immunohistochemistry. To assess the production of these factors by cells other than 

macrophages or fibroblasts, we masked blood vessels/nerves in individual images of 

tissue sections with wear-debris and varying degrees of vascularity for five TDR 

patients. Macrophages were also quantified to assess their relationship with 

angiogenesis. Our results showed the total number of blood vessels strongly 

correlated with the levels of TNFα, IL-1ß, VEGF, PDGFbb, NGF and substance P, 
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confirming that vascular changes and inflammatory-mediated responses are 

interrelated. Furthermore, the innervation/pain factors, NGF and substance P, were 

predominantly localized to vascular channels, strongly suggesting increased 

innervation of these tissues. Lastly, comparing blood vessel number with factor 

production and macrophage number in images from tissue sections with low and high 

vascularity suggested that a temporal link exists between increased inflammatory 

factors, macrophages and angiogenesis.  

5.2 Introduction 

 Angiogenesis is the growth of new blood vessels from existing vasculature that 

can play a critical role in development [6], but may also be involved in pathological 

conditions of wear-debris-induced inflammation (i.e. particle disease) after total disc 

replacement (TDR) [28]. While the term “particle disease“ was originally coined to 

describe the failure of local tissue homeostatic mechanisms for total hip replacements 

(THRs), wear particles in both the hip and spine may also indirectly lead to the 

induction of angiogenesis and other tissue functional changes [9, 28]. These changes 

are a consequence of wear particle-induced release of inflammatory factors by 

resident fibroblasts and recruited macrophages. In addition, these “activated” cells 

also proliferate and the increased cellular activity/metabolism results in higher 

oxygen consumption in the local tissue. In turn, this process induces hypoxic or 

oxygen-deficient microenvironments [26]. Subsequently, fibroblasts, macrophages 

and other hypoxic cells (even neurons) in the tissues secrete factors such as vascular 

endothelial growth factor (VEGF) to promote an increase in vascularization in an 
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attempt to alleviate hypoxia [13, 18]. Although the annulus fibrosis of the spinal disc 

regions is poorly vascularized [19], activated fibroblasts and macrophages in close 

proximity to existing blood vessels can coordinate signals with endothelial cells (ECs) 

and other stromal cells to stimulate angiogenesis [6, 12]. Specifically, activated 

macrophages, given their ability to play a trophic role in pathological angiogenesis 

and anastomosis [20, 23], can induce blood vessel ingrowth, which can consequently 

result in the infiltration of more monocytes. Thus, increased vascularization can 

ultimately lead to enhanced inflammation and more VEGF production, thereby 

creating a viscous cycle. 

 In addition to increasing oxygenation, angiogenesis can lead to increased 

innervation of the tissue by nociceptive nerve fibers. It is well established and has 

been published in anatomy textbooks for decades that peripheral nerves track 

alongside blood vessels. During development of the sympathetic nervous system, 

neural crest stem cells migrate to positions adjacent to the aorta and extend axons in 

close proximity to the peripheral vasculature [5]. Similarly, degenerative disc disease 

stimulates sympathetic nerve fibers to follow the trajectories of ingrowing blood 

vessels into the relatively avascular and aneural disc [5, 8]. Studies have shown that 

ECs from infiltrating vessels can secrete neurotrophins such as nerve growth factor 

(NGF), whereas peripheral sensory nerves can secrete VEGF, creating a complex, but 

coordinated pattern of growth between large blood vessels (typically arteries and 

veins that connect the vascular network and provide a capillary source for nutrient 

and oxygen exchange) and nerve fibers [8, 18]. In degenerative disc studies involving 

painful discogenic pain, these infiltrating nerve fibers are positive for proteins like 
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substance P, indicative of nerves originating from the dorsal root ganglion; and thus, 

these fibers are nociceptive [2, 4, 10, 21].  

 While there is already a dearth of knowledge on the mechanisms underlying 

vascular and nerve ingrowth into painful intervertebral discs, there are no reports 

regarding the contributions of a neurovascular component in the pathogenesis of 

inflammatory particle disease after TDR. We hypothesized that wear-debris-induced 

inflammatory mediators and cells noted in our previous retrieval studies of TDR 

tissues (see Chapter 4), may be intimately linked to vascularization and innervation. 

To investigate this link, we focused on localized relationships between inflammatory 

factors, CD68+ macrophages, vascularization and innervation factors in these 

periprosthetic spine tissues. We evaluated whether: (1) the total number of large 

blood vessels present in tissue sections from revised TDRs were associated with the 

inflammatory factors, TNFα, IL-1ß, VEGF, PDGFbb, NGF and substance P in the 

respective sections; (2) the innervation and pain factors, NGF and substance P, were 

localized to large blood vessels and surrounding nerve fibers; (3) the localization of 

large blood vessels, inflammatory factors and macrophages suggested temporal 

differences in tissue sections with varying levels of vascularity. 

5.3 Materials & Methods 

5.3.1 Tissue Selection & Patient Information  

 All periprosthetic revision and initial TDR surgical tissues were collected as 

part of a public, multi-center retrieval research program initiated in 2004 [15, 16]. 

For the initial analysis studying associations between the vasculature and 
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inflammatory factors in the periprosthetic spine, 30 periprosthetic tissue samples 

were evaluated from 11 TDR patients (see Chapter 3.3.1 and Table 3-1). For the 

investigations focused on the localization of blood vessels, inflammatory factors and 

macrophages, five representative tissue sections were chosen from five TDR patients 

(Table 5-1). The inclusion criteria for this selection process were: (1) the presence of 

wear debris to specifically study wear-induced tissue responses; (2) the presence of 

at least 10 blood vessels per section to match baseline levels of vascularization noted 

in intervertebral disc tissue controls; and (3) a range of low to high vascularity based 

on the Oxford scoring system (see Chapter 3.3.2 and Table 3-3) to study temporal 

differences.  

Table 5-1. Tissue Selection and Clinical Information for TDR Patients 

Patient ID Section ID 

Age at TDR 

Implantation 

(years) 

Implantation 

Time  

(years) 

UHMWPE 

Wear 

Debris 

Vascularization 

Score  

(0-3)* 

BHSP 023 Right Intradiscal 56 5.0 Yes 3 

BHSP 025 Left Posterior L5-S1 49 4.0 Yes 3 

BHSP 027 Left Discal 33 5.0 Yes 1 

BHSP 0032 L5-S1 46 6.0 Yes 3 

BRSP 003 Inferior L4-L5 28 1.5 Yes 1 

*Values based on modified Oxford scoring system developed in Chapter 4. 

5.3.2 Tissue Preparation & Immunohistochemistry  

Tissues collected from revision surgeries were fixed in either formalin or Universal 

Molecular Fixative (UMFIX; Sakura Finetek USA, Inc, Torrance, CA, USA). One to two 

4-mm punches from each tissue, considering variations in color, texture, and size of 



121 
 

specimen, were embedded in paraffin blocks, and 6-µm serial sections were mounted 

onto ProbeOnPlus (Fischer Scientific Co, Pittsburgh, PA, USA) slides. 

Immunohistochemistry was performed on prepared slides to evaluate the expression 

of six secretory factors and a pan-macrophage marker: pro-inflammatory cytokines, 

TNFα (Rabbit IgG, Novus Biologicals, NBP1-19532) and IL-1ß (Rabbit IgG, Abcam, 

AB2105); vascularization factors, VEGF (Rabbit IgG, SantaCruz, sc-507) and PDGFbb 

(Rabbit IgG, Abcam, ); pain-related factors, NGF (Rabbit IgG, Abcam, AB6199) 

substance P (Rabbit IgG, EMD Millipore, AB1566); and macrophage marker, CD68 

(Rabbit IgG, Abcam, AB125157). Optimal conditions for the inflammatory and pain-

related antibodies were determined using periprosthetic tissues of total hip 

replacement patients that had severe pain and wear debris; mouse kidney tissues for 

the vascularization factors; and human tonsil tissue for the macrophage marker. The 

antibody concentrations were: TNFα 1:100, IL-1ß 1:400, VEGF 1:100, PDGFbb 1:100, 

NGF 1:500, substance P 1:500 and CD68 1:100. Slides with tissues originally fixated 

in formalin, as opposed to UMFIX (Sakura Finetek, Torrance, CA), were first treated 

with an antigen retrieval solution (Vector Labs). All slides were incubated in 

0.5%Triton in PBS to enhance permeability, 3% H2O2 in methanol to block 

endogenous peroxidases, and to block non-specific background in 4% BSA, 0.1% 

Tween 20 in PBS. Lastly, slides were incubated at 4 °C overnight with the primary 

antibodies. For antibody visualization, samples were incubated with pan-specific 

secondary antibody, followed by horseradish peroxidase (Santa Cruz Biotech) and 

DAB solution (Vector Labs), and then counterstained with 50% hematoxylin.  

5.3.3 Imaging & Analysis  
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Each stained tissue section was imaged (200X objective) using an Olympus 

BX50 microscope (Olympus, Melville, NY, USA) equipped with a stepper motor-

controlled stage. DAB expression was determined by first employing a customized 

image threshold operation programmed in MATLAB® (MathWorks Inc, Natick, MA), 

followed by measuring area via NIH ImageJ (National Institutes of Health, Bethesda, 

MD). In brief, the red, green and blue channels for the 24-bit bright field DAB-labelled 

images were normalized by the sum of the three channels. Pixel values for 8-bit 

images were calculated using a published formula that allows for maximal separation 

of DAB-stained pixels from the background tissue: 255*blue/(red+green+blue) [3]. 

CD68+ macrophages were quantified in each image (200x) of the stained 

tissue sections with the aid of Image-Pro Plus 6.0 (Media Cybernetics, Silver Spring, 

MD, USA). A customized macro was generated to threshold and count DAB-stained 

cells, in which the algorithm allowed the non-stop analysis of up to 50 consecutive 

images. In brief, images were split into three eight-bit channels (red, green, and blue). 

Signal from blue channels were converted into masks based on a threshold value 

relative to the average signal intensity of each image. Next, count/size operations 

were employed along with water-shed split commands in order to maximize accuracy 

of counts. See Appendix 1-3 for macro.  

Lastly, automation for the quantification of blood vessels was not possible 

through conventional thresholding and edge-detection. Large blood vessels were 

quantified through manual counts conducted by at least two individuals. For 

localization analysis, the tunics of blood vessels were manually traced in each image, 
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creating regions of interest that could be masked. Note that the tunics are not visible 

at 200X magnification for smaller vessels such as capillaries, postcapillary venules or 

arterioles. However, the focus of the analysis was to determine the number of large 

vessels (i.e. arteries and veins) that theoretically provide a conduit for in-growing 

nerve fibers [8, 18]. All analysis was performed in a blinded fashion. 

5.3.4 Statistical Analysis  

The normality of the data was determined using Shapiro-Wilk test (IBM SPSS 

Statistics V22 software package, IBM Corporation, Armonk, NY, USA). To statistically 

compare immunohistochemical levels between different patient groups, the Mann-

Whitney U-test was employed. Significance was based on p < 0.05. Correlations for 

blood vessels, inflammatory factors and inflammatory cells were determined using 

Spearman Rho correlation test for non-parametric data. Significance was based on p 

< 0.05. 

5.4 Results 

5.4.1 Correlations between the Total Number of Blood Vessels and 

Inflammatory-mediated Pain Factors in TDR Tissues 

        To determine whether inflammatory-mediated pain factors correlated with 

tissue vascularity, the number of blood vessels in each tissue section was compared 

to factor expression for eleven TDR patients. The number of blood vessels, showed an 

expectedly significant and strongly positive correlation to the percent area of VEGF 

(p < 0.001, ρ = 0.70), but only a significant and weakly positive correlation to PDGFbb 

(p = 0.022, ρ = 0.46) (Figure 5-1). In the majority of cases, PDGFbb was only expressed 
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in high amounts when the tissue sections were highly vascularized (>45 blood vessels). For 

the pro-inflammatory cytokines, the number of blood vessels also showed a significant 

and strongly positive correlation to the percent area of TNFα (p = 0.001, ρ = 0.70), 

and a significant and moderately positive correlation to IL-1ß (p = 0.002, ρ = 0.57) (Figure 

5-2). However, high TNFα levels were predominantly observed only when the tissue 

sections were highly vascularized (>45 blood vessels). Lastly, comparisons to the 

innervating/pain factors revealed the number of blood vessels also showed a significant 

and strongly positive correlation to the percent area of NGF (p < 0.001, ρ = 0.70), and 

a   significant   and   moderately   positive   correlation to substance P (p = 0.003, ρ = 0.57)  

 

Figure 5-1. Blood vessel number correlated with VEGF and PDGFbb. 
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Figure 5-2. Blood vessel number correlated with TNFα and IL-1ß. 

 

Figure 5-3. Blood vessel number correlated with NGF and substance P. 
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(Figure 5-3). While both factors showed a correlative relationship with blood vessel 

number, variations in expression levels were noted in both tissues sections with moderate 

and high vascularity.  

5.4.2 Co-localization of Factors with Blood Vessels 

 
Figure 5-4. Representative images of TDR tissues immunostained for PDGFbb 
(left), NGF (middle) and substance P (right) illustrating co-localization of all 

three factors to blood vessels (black arrows).  

Five vascularized tissue sections with wear debris from five TDR patients were 

selected to determine whether the inflammatory factors and particularly, innervation 

factors were co-localized to ingrown blood vessels in the periprosthetic spine tissues; 

each DAB-stained image was individually analyzed at 200X magnification and factor 

expression was averaged for each of the selectedtissues. All six factors, VEGF, 

PDGFbb, TNFα, IL-1ß, NGF and substance P, were expressed in some blood vessels to 

a certain degree (Figure 5-4), however only three factors appeared to be specifically 

localized to blood vessels.  

Masking blood vessels in images from the five tissue sections showed a 

decrease in amounts for all six factors at varying levels. Quantifying the percentage 

decrease of the factors when blood vessels were masked showed that PDGFbb and 

the innervation/pain factors NGF and substance P were reduced by more than 25%, 
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inferring that they were largely localized to blood vessels, and being produced by ECs, 

vascular smooth muscle cells and/or peripheral nerves (Figure 5-5). Furthermore, 

NGF was significantly higher in blood vessels compared to TNFα (p = 0.016), and 

PDGFbb was significantly higher in blood vessels compared to VEGF, TNFα, IL-1ß and 

substance P, respectively (p = 0.008; P = 0.008; p = 0.016; p = 0.016).  

  
Figure 5-5. Percentage decrease of all six factors in periprosthetic tissues 

when blood vessels were masked. 

5.4.3 Correlations for Blood Vessel Number with Inflammatory-mediated Pain 

Factor Expression and Macrophages in Tissues with Varying Levels of 

Vascularity 

To assess how vasculature is related to local production of these factors, 

representative tissue sections (selected for wear debris and varying levels of vascu-  
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Figure 5-6. Blood vessel number and factor amounts per image in (A) low and 

(B) highly vascularized patient tissues. 

larity) from five TDR patients were chosen in which blood vessels and inflammatory-

mediated pain factors were quantified in individual images (at 200X magnification). 

These results were then separated based on low and highly vascularized tissue 

sections (Figure 5-6A & B). In less vascularized tissue sections, the number of blood 

vessels weakly correlated with only TNFα (p = 0.007; ρ = 0.33) and substance P (p = 

0.039, ρ = 0.27). In highly vascularized tissue sections, the number of blood vessels 

correlated significantly with decreasing strength to TNFα (p < 0.001, ρ = 0.58), 

PDGFbb (p < 0.001, ρ = 0.55) and VEGF (p = 0.004, ρ = 0.35). Contrary to results from 

less vascularized tissue sections, substance P, although not statistically significant, 
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showed a negative association (p = 0.115, ρ = -0.24). NGF and IL-1ß showed no 

significant correlation in either case, but maintained a weakly positive association in both 

low and highly vascular tissues. A larger sample size may be necessary to identify the 

production of NGF and IL-1ß by ECs, vascular smooth muscle cells and/or peripheral 

nerves. Nonetheless, taken together, this data suggests a differential expression of factors 

depending on vascularity. 

 

Figure 5-7. Blood vessel number and macrophage number per image in low 
(A) and highly vascularized (B) patient tissues. 

To determine how vessel number is related to the local presence of 

macrophages, blood vessel and CD68+ macrophage number were quantified in 

individual images (at 200X magnification) and then collectively compared for low and 

highly vascularized tissue sections (Figure 5-7A & B). In less vascularized tissue 

sections, the number of blood vessels correlated significantly, but very weakly, to the 

number of CD68+ macrophages (p = 0.001, ρ = 0.55). In contrast, in highly 
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vascularized tissue sections, the number of blood vessels correlated significantly and 

very strongly to the number of CD68+ macrophages (p < 0.001, ρ = 0.92).  

Although no significant correlations were originally found for implantation 

time (see Chapter 4), the mean implantation time for the low and high vascularity 

groups was 3.25 years and 4.3 years, respectively. 

5.5 Discussion 

Wear-debris and subsequent inflammation have been established in TDR 

revision tissues (see Chapters 4 & 5). In this study, increased vascularization has been 

identified as a consistent histomorphological change in response to wear debris. As 

such, the ingrowth of blood vessels may be providing a conduit for nociceptive 

innervation. Thus the aim of this study was to explore the contributions of a 

neurovascular component in wear-debris-mediated tissue responses. By determining 

the production of six inflammatory-mediated pain factors in tissue sections for all 

eleven patients making up the original TDR cohort, we found the total number of 

blood vessels was significantly associated with TNFα, IL-1ß, VEGF, PDGFbb, NGF and 

substance P, confirming that vascular changes and inflammatory-mediated responses 

are interrelated. Based on individual images of tissue sections with wear-debris from 

five TDR patients (a new approach), we found that in addition to PDGFbb, the 

innervation/pain factors, NGF and substance P, were predominantly localized to 

vascular channels. Lastly, correlations for blood vessel number with factor expression 

and macrophage number in images from tissue sections with low and high vascularity 

revealed a temporal link between TNFα, macrophages and angiogenesis. 
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The significant localization of NGF and substance P with vascular channels 

supported our hypothesis that innervation is intertwined with the trajectories of in-

growing blood vessels. Although this study does not provide evidence for the 

presence of actual nerves or pain, it is well established that these factors are involved 

in nerve ingrowth and predominantly secreted at sensory nerve endings resulting in 

nonciception or pain [1, 7, 14, 29]. Furthermore, both factors work in synergy and 

may be directly involved in mediating innervation and pain of the lower back [24, 27]. 

Taken together, the association of NGF and substance P with wear-debris induced 

inflammation and vascularization elucidates key mechanisms that may be involved in 

the development of pain in TDR patients.  

Tissue sections with low and high vascularity (and noted for the presence of 

wear debris) were selected with the idea that the latter group contains more in-grown 

blood vessels and thus, systematic analysis of individual images in the two sets may 

provide insight into the temporal component of particle-induced pathogenesis. 

Substance P was the only factor that showed a strong association to low, but not 

highly vascular tissues, suggesting that it may be one of the initiating factors for the 

coordinated in-growth of blood vessels and nerves. Whereas, TNFα, VEGF and 

PDGFbb showed stronger associations with blood vessel number in highly vascular 

tissue sections, suggesting they may be playing a more prominent role during 

relatively late stages of particle-induced tissue response.  

Interestingly, TNFα showed a progressive correlation to low and high 

vascularity, suggesting that even though this factor is not co-localized to blood 
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vessels, it may be playing an essential role in regulating angiogenetic progression. 

Although the role of TNFα in angiogenesis is the subject of some controversy, the 

duration of TNFα signaling can differentially regulate EC cell responses [25]. For 

example, in vitro studies have shown the initial secretion of TNFα can block signaling 

of VEGF receptor-2 and delay the VEGF-driven angiogenic response by inhibiting EC 

cell proliferation and migration [11, 22]. On the other hand, depending on the 

duration of TNFα signaling, it can also prime EC cells for sprouting by inducing tip cell 

phenotype via macrophage nuclear factor-κB (NF-κB) activation [25]. Since 

macrophages are a major source of TNFα, and their numbers also increased in highly 

vascularized tissues this strengthens a synergistic association of inflammation and 

TNFα with angiogenesis. Supporting this synergistic hypothesis, animal studies in 

mice and chicks indicate inflammatory factors like TNFα are essential for 

macrophage-induced angiogenesis [17]. Furthermore, a reduced number of 

macrophages can result in a significant delay in the onset of the angiogenic switch, 

suggesting inflammatory factors, which includes all six factors in this study, may be 

required for increased vascularization of periprothetic TDR tissues. In conclusion, 

while the current results reveal some temporal differences and potential stages in 

wear-debris-induced vascularization, more research with a larger sample size is 

necessary to better understand the systematic progression of particle disease.  
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CHAPTER 6 

Rare and Abnormal Biological Complications of Osteolysis after 

Total Disc Replacement: A Case Series† 

6.1 Abstract 

While this dissertation has focused on elucidating the clinical relevance of 

wear debris in the spine with an emphasis on pain, which is the primary reason for 

revision, osteolysis is a rare complication that should not be entirely discounted. 

Although few such complications have been reported for lumbar total disc 

replacement (TDR) and hybrid TDR fixations, our retrieval center identified and 

evaluated retrieved implants and periprosthetic tissue reactions for two cases of 

osteolysis following disc arthroplasty with ProDisc-L prostheses. Implants were 

examined for wear and surface damage, and tissues for inflammation, polyethylene 

wear debris by polarized light microscopy and metal debris by energy-dispersive X-

ray spectroscopy. Despite initial good surgical outcomes, osteolytic cysts were noted 

in both patients at vertebrae adjacent to the implants. For the hybrid TDR case, 

heterotopic ossification and tissue necrosis due to wear-induced inflammation were 

observed. In contrast, the non-hybrid implant showed signs of abrasion and 

impingement, and inflammation was observed in tissue regions with metal and 

polyethylene wear debris. In both cases, wear debris and inflammation may have 

contributed to osteolysis. Surgeons using ProDisc prostheses should be aware of 

these rare complications.  
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6.2 Introduction 

 Total disc replacement (TDR) is an established alternative to lumbar fusion for 

the treatment of back and leg pain that is associated with degenerative disc disease 

(DDD). In cases of 2-level DDD, hybrid fixation is a new approach that involves 

combining the advantages of TDR with spinal fusion at the adjacent (typically 

inferior) level. This approach preserves motion at one level and maintains stiffness in 

the lower segment to prevent adjacent segment degeneration. Aunoble and 

colleagues have shown that the clinical outcomes for patients that received hybrid 

surgery may be superior to 2-level TDRs or fusion in certain cases as there was a mean 

reduction of 24.9 in the owestry disability index (ODI) and a 64.6% improvement in 

the visual analog scale (VAS)[2]. Nevertheless, this does not mean every patient will 

benefit from hybrid fixation; for instance, the condition of the facet joints also serves 

as a central factor when determining the type of construct that is appropriate for a 

particular patient. 

  Although the majority of patients attain clinically significant pain reduction 

after 1-level TDR or hybrid fixation, foreign-body response to wear debris and rare 

instances of osteolysis have been noted for other devices. Historical generations of 

polyethylene-core devices such as the Charité Disc [originally Waldemar Link, 

Hamburg, Germany, later fabricated by DePuy Spine, Raynham, MA and currently 

discontinued] prostheses have shown evidence of polyethylene wear debris in 

periprosthetic tissues, accompanied by histological changes, the presence of 

histiocytes and multinuclear giant cells [9, 18]. Polyethylene wear particles are 

released from the implant as a consequence of abrasive and adhesive wear 
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mechanisms and are then ingested by resident macrophages initiating a chronic 

immune response that can lead to osteolysis[4]. Evidence of lumbar periprosthetic 

osteolysis appeared in 1 of 21 implant revisions from 18 patients who received a 

Charité Disc in our previously reported study, but little is known about osteolysis 

around ProDisc-L implants [9]. 

Interestingly, the one osteolysis case reported in our previous study occurred 

in a patient that underwent hybrid fixation. This raises the question of whether the 

combination of TDR and fusion may create a loading and kinematic environment 

conducive to potential osteolysis. Another potential factor that may contribute to 

osteolysis in the spine is the use of bone morphogenic protein (BMP) during fusion. 

McKay et al. noted that resorption rates around the implant increase with the use of 

BMP-2, presumably due to BMP-induced enhancement of osteoclast activity, which 

results in vertebral osteolysis [6, 14].  

 The purpose of this study was to report two unusual cases of osteolysis with a 

ProDisc-L lumbar disc replacement—one in which the patient underwent TDR at the 

level superior to BMP-induced interbody fusion at L5-L6 and another who had similar 

osteolytic lesions after 1-level TDR without any exposure to BMP-2. Both patients 

underwent TDR with ProDisc-L [Synthes, West Chester, PA] prosthesis, which 

consists of an ultra-high molecular weight polyethylene (UHMWPE) core and two 

metallic endplates made of a cobalt-chromium (CoCr) alloy and plasma-coated on the 

outside with titanium, similar to the Charité [10]. However, unlike the Charité, the 

UHMWPE core of ProDisc-L is locked into the inferior endplate, thus allowing relative 

motion only between the UHMWPE core and the superior endplate. To our 
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knowledge, there have been no previous reports on complications associated with 

osteolysis with the use of ProDisc-L.    

6.3 Materials & Methods 

6.3.1 Patients and Clinical Information 

Two patients who suffered from lumbar disc herniation and radiculopathy 

underwent surgery. One patient required multi-level treatment and opted for hybrid 

fixation with ProDisc-L TDR and fusion, while the other received 1-level ProDisc-L 

TDR. Both TDRs were extracted during revision surgery and periprosthetic tissue 

specimens selected from regions adjacent to the implant were obtained. Retrievals, 

operative notes and radiographs were de-identified and collected in accordance with 

an IRB-approved protocol. 

6.3.2 Implant Retrieval Analysis 

The two sets of retrieved components were cleaned in 10 % bleach and 

examined under a stereomicroscope equipped with a digital camera (Leica DFC490) 

to assess for surface damage and gross fracture. All components were inspected to 

identify surface damage mechanisms (plastic deformation, scratching, burnishing, 

pitting, and embedded debris). Damaged regions of the implants were analyzed using 

scanning electron microscopy (SEM; Supra 50 VP, Zeiss Peabody, MA, USA), energy-

dispersive X-ray spectroscopy (EDS) and x-ray fluorescence (XRF). 

6.3.3 Tissue Preparation and Histological Analysis 
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Tissues collected from revision surgeries were fixed in Universal Tissue 

Fixative (Sakura Finetek USA, Inc., Torrance, CA, USA), and decalcified based on the 

presence of heterotopic ossification determined by microCT (μCT 80, Scanco Medical, 

Bru¨ttisellen, Switzerland). One to two 4-mm punches from each tissue, considering 

variations in color, texture, and size of specimen, were embedded in paraffin blocks 

for 6-lm serial sectioning and staining with Alcian blue (Electron Microscopy 

Sciences, Hatfield, PA, USA), hematoxylin, and eosin (H&E) (ThermoFisher Scientific, 

Waltham, MA, USA). Entire tissue sections were imaged under transmitted light 

microscopy using a Motic BA300POL microscope (Motic, Richmond, British Columbia, 

Canada), equipped with an elliptically polarized light imaging system and ProgRes 

SpeedXT core 5 (Jenoptik, Jena, Germany) microscope camera. Inflammatory cells 

were confirmed using the Wright-Giemsa stain (Electron Microscopy Sciences, 

Hatfield, PA, USA). Tissues with notable chronic inflammation were examined using 

environmental scanning electron microscopy (ESEM; XL-30 ESEM-FEG, FEI Company, 

Hillsboro, OR, USA) with backscatter and were analyzed with EDS. 

6.4 Case 1 

 A 40-year-old male suffering from discogenic collapse with lower back pain and 

radiculopathy at L5-S1 underwent anterior discectomy at L5-S1 and interbody 

arthrodesis with 17x24mm titanium-threaded fusion cages filled with BMP-2. The 

cages were inserted on each side of the vertebrae. A few months later, a posteriorly 

displaced cage, along with osteophyte formation and foraminal stenosis, required the  
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Figure 6-1. Sagittal (A) and axial (B) CT scans from case 1 illustrating 
discogenic herniation and osteolytic cysts at inferior L4 and superior L5. The 

axial scan also shows that there may be facet osteophytes and nerve root 
compression at the foramen 

patient to undergo revision of the cage. Segmental pedicle screws were used to 

stabilize the cage on the right side; 6.5mm Xia (Stryker Spine, Allendale, NJ) pedicle 

screws were inserted at L5 and S1. Once the cages were locked, posterior interbody 

arthrodesis was then implemented at L5-S1 with the use of BMP-2 in two small 

sponges placed between each cage. One year later, with continued back pain and disc 

herniation at L4-L5, the patient opted for hybrid fixation and underwent anterior 

interbody placement of 12mm-large and 6-degree ProDisc-L (Synthes, West Chester, 

PA) prosthesis at L4-L5. The following year, the patient had removal of pedicle screw 

instrumentation at L5-S1 and there was solid fusion at the level. It may be important 

to note that the patient also required mass resection of osteophytes, other bony spurs 

and scar tissue.  

 Three years after fusion, persistent pain was experienced by the patient and 

severe arthropathy and degeneration was noted at right L4-L5. As the patient refused 
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to undergo disc removal and anterior fusion, posterior fusion was undertaken; 6.5mm 

screws were inserted and a PEEK rod was implemented at L4-L5, followed by 

posterolateral arthrodesis using local bone autograft, BMP-2, and DBX Demineralized 

Bone Matrix Allograft (Musculoskeletal Transplant Foundation, Edison, NJ). However, 

computed tomographic (CT) scans in the following year revealed osteolytic cysts at 

L4-L5 (Figure 6-1). The patient now consented to artificial disc removal. The PEEK 

rod stabilization system (2 PEEK rods and 4 pedicle screws) was removed and sent 

for retrieval analysis, along with the explanted artificial disc. Preoperative work up 

and intraoperative cultures ruled out infection. Tissue samples adjacent to the disc 

were also removed for histological analysis. After explantation of disc, the patient 

underwent spinal fusion with vertebral corpectomy. The area was filled and sealed 

with allograft bone and BMP-2. In the same year, pedicle screws were placed with 

rods for stabilization and posterior lateral arthrodesis was conducted with more local 

bone autograft and BMP-2. An overview of clinical information is provided in Table 

6-1. 

Table 6-1. Clinical information for the hybrid case 1 & non-hybrid case 2. 

Implant Level Sex 
Age at 

Implantation 

Age at 

Revision 

Primary 

Diagnosis 

Revision 

Reason 

Previous 

Surgeries 

Implantation 

Time 

Case 1 L4-L5 M 41 46 

Lumbar disc 

herniation, 

radiculopathy 

Pain, 

osteolysis 11 5 years 

Case 2 L4-L5 M 56 59 

Lumbar disc 

herniation,  

radiculopathy 

Pain, 

subsidenc

e, 

osteolysis 4 3 years 
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6.4.1 Device Retrieval Analysis 

 

Figure 6-2. Retrieved ProDisc-L TDR, 5 years after insertion.  The device was 
damaged during explantation. While it is unclear as to whether the 

polyethylene core was damaged in-vivo, there is no evidence of wear 
mechanisms on the end-plates. 

 The ProDisc-L prosthesis was retrieved five years after implantation. The 

polyethylene core was damaged during explantation, particularly the dome of the 

core (Figure 6-2). Due to iatrogenic damage, we could not determine if the rims of the 

polyethylene core experienced impingement with the superior endplate. While the 

backside surface also experienced iatrogenic damage, there was evidence of 

burnishing and scratching that occurred in vivo. There were no obvious signs of 

impingement on the metallic endplates, and the abrasive scratches were not 

patterned in any physiological manner, suggesting they were formed by surgical tools 

during device removal. Analysis using environmental scanning electron microscopy 

(ESEM) (XL-30 ESEM-FEG, FEI Company, Hillsboro, Oregon) and energy X-ray 

dispersive spectroscopy (EDS) revealed no abnormal surface deposits on the metallic 

endplates. As expected, x-ray fluorescence (XRF) scans consistently detected cobalt-
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chromium ratios matching ASTM F-75 cobalt alloy weight-standards in the interior of 

the endplates, and the exterior plasma-coated elements consisted of alloy 

compositions seen in commercially pure titanium.   

6.4.2 Tissue Analysis 

 
Figure 6-3. Bony tissue from case 1 stained with H&E (100X) showed necrotic 

bone with empty osteocyte lacunae (arrow) and necrotic marrow. 

 Periprosthetic tissues from this patient were obtained from two unclassified 

regions around the implant. Two tissue samples from one region were identified to 

be fibrocartilage, the other two samples from the second region were mature 

trabecular bone. One isolated region in the fibrocartilage tissue contained 

hemosiderin deposits and macrophages; consistent with an innate response to 

hemorrhage prior to explantation. There was no evidence of metal wear debris in any 
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tissues and only minor polyethylene debris was detected in isolated regions of the 

trabecular bone at a mean density of 1.13 particles/mm2.  In bony tissue samples, the 

fatty marrow in the intertrabecular spaces contained only a small number of viable 

cells; isolated regions of these samples consisted of necrotic bone marrow along with 

necrotic bone with empty osteocyte lacunae (Figure 6-3). An overview of tissue 

morphology is provided in Table 6-2. 

6.5 Case 2 

 
Figure 6-4. Sagittal (A) and axial (B) CT scans from case 2 showing L4 

subsidence on the right side of the vertebra and one large osteolytic cyst in L5. 
Smaller osteolytic formations are also evident at superior L5. 

A 56-year old male with a herniated disc and radiculopathy at L4-L5 underwent 

anterior TDR with a 10mm-large and 6-degree ProDisc-L. Three years after, 

subsidence of disc was noted at L4 on the right side, along with the formation of 

osteolytic cysts in CT scans at L5 that appear similar to the lesions seen in case 1 

(Figure 6-4). Progressive back pain led to removal of ProDisc-L, followed by 

placement of 22mm PEEK interbody graft filled with BMP-2  for interbody  fusion  at 
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*Exact tissue region of extraction is unknown. 

Table 6-2. An overview of tissue morphology for the two cases. 

Implant 
Tissue 

Location 
Degeneration Bone/Cartilage Hemosiderin 

Innate/ 

Adaptive 

Inflammation 

PE Wear 

Debris 

(particles

/mm2) 

Metal 

Wear 

Debris 

Case 1 *Region 1 No No/Yes Minor Minor/No None No 

 *Region 2 Yes Yes/None None No/No 1.13 No 

Case 2 

Lateral 

Annulus I No No/Isolated None No/No None No 

 

Lateral 

Annulus II Yes Isolated/Yes None No/No None No 

 Left Lateral Yes No/Yes 

Moderate; 

Isolated Moderate/No None No 

 

Lateral 

Spur I Yes Yes/Isolated None No/No None No 

 

Lateral 

Spur II Yes Yes/No None No/No None No 

 

Posterior 

Lateral Yes Yes/No Mild Moderate/Yes 2.74 No 

 

Superior 

End Plate No Yes/No None No/No None No 

 Left Cyst No Isolated/No Mild Severe/Yes 2.96 Yes 

 Right Cyst Isolated Isolated/No Moderate Severe/Yes 2.88 Yes 

 Inner Cyst Yes No/No Moderate Severe/Yes 2.90 Yes 

 Intradiscal Isolated 

Isolated/ 

Isolated 

Moderate; 

Isolated Severe/Yes None Yes 

 

Right 

Intradiscal No No/No Severe Moderate/Yes None Yes 

 

Posterior 

Intradiscal Yes No/No Mild; Isolated Moderate/Yes 1.01 Yes 

 

Anterior 

Intradiscal Yes Yes/Yes None No/No 1.25 No 
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L4-L5. Preoperative workup and intraoperative cultures were negative for infection. 

6.5.1 Device Retrieval Analysis 

Figure 6-5. Retrieved ProDisc-L TDR, 3 years after insertion. Note the signs of 
impingement on both endplates (arrows). The impinged region on the 

metallic plate (lower right) has a smooth surface compared to the unimpinged 
region (upper right). 

 The ProDisc-L prosthesis was retrieved three years after implantation. There 

was clear evidence of chronic impingement between the endplates and burnishing at 

the core’s edge; microscopic scratches of fan-shaped pattern were found on the 

interior of the metallic plates and a glossy appearance on the polyethylene core, 

respectively (Figure 6-5). SEM images of the impinged regions showed a polished 

appearance in comparison to the as-manufactured texture seen in non-impinged 

regions of the metallic plate. The unidirectional and circumferential wear patterns 

seen on the endplates suggest the wear may have occurred during axial rotation 

and/or lateral bending of the articulating surfaces. The impingement was most likely 

due to implant subsidence which was observed by the surgeon during surgery. The 
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dome of the core also had evidence of multi-directional scratches and burnishing. 

There were no indications of fatigue wear or fracture of the polyethylene core. No 

abnormal surface deposits were observed by SEM/EDS analysis. XRF scans showed 

the metallic surface-constituents on the interior of the endplates consistently 

matched CoCr ratios seen in ASTM F-75 cobalt alloy standards, and the exterior of 

plates consisted of weight compositions seen in commercially pure titanium. 

6.5.2 Tissue Analysis 

Figure 6-6. Histology of inner-cyst tissue with H/E stain showing mixed 
inflammation throughout. Inset A shows presence of macrophage-ingested 
metallic debris (H/E, 400X). Inset B shows presence of lymphocytes in the 

tissue (Wright-Giemsa, 400X). 

 The periprosthetic tissues in this patient showed several abnormalities such as 

progressive degeneration, varied inflammation levels, and metal and polyethylene 

wear debris (Table 6-2). While degeneration was observed in tissues from various 

regions, inflammation was predominantly in the intradiscal and  cyst   tissue;   there 
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Figure 6-7. Titanium alloy and cobalt-chrome particles (arrows) were 
confirmed by use of backscatter scanning electron microscopy with elemental 
dispersive spectroscopy. Analysis of a region of interest (square) evidenced 
cobalt as the most abundant metal visualized by scanning electron microscopy. 
Wt = weight; At = atomic weight 

were no signs of inflammation in tissues from the lateral annulus, left lateral, lateral 

spur, superior end plate and anterior intradiscal regions. Cyst tissue from L5 regions 

showed signs of both innate and adaptive immune response; macrophage ingested 

metal-wear-debris was present throughout the tissue and isolated areas of 

lymphocytes were also present (Figure 6-6). Cyst and intradiscal tissues also 

contained hemosiderin deposits (not shown), suggesting a prior hemorrhage that 

may have contributed to or exacerbated the chronic inflammation.  To confirm 

metallic wear debris, tissues with notable inflammation were examined by ESEM 

using backscatter and were analyzed with EDS. The particles from cyst and intradiscal 

tissues were predominantly cobalt and chromium, however titanium was also 

detected (Figure 6-7). Polyethylene wear debris was present in relatively low 

numbers in all cyst, posterior-intradiscal, anterior-intradiscal and posterior-lateral 
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tissues. The mean polyethylene particles in these tissues was 2.08 particles/mm2. 

These particles varied from oval to amorphous in shape and were localized to regions 

of chronic inflammation (Figure 6-8).  

 

Figure 6-8. An H/E stained region of left-cyst tissue was stained with Wright-
Giemsa (A, 1000X) and observed under polarized light (B, 1000X), showing 
evidence of mixed inflammation and polyethylene particles, respectively. 

6.6 Discussion 

 This study reported two unusual cases of osteolysis in TDR patients with a 

ProDisc-L. The first patient suffered from multi-level DDD and opted for hybrid 

fixation, while the second had a 1-level TDR. Both patients developed osteolyic lesions 

in vertebrae adjacent to the prostheses. Infection was ruled out in both cases. 
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Retrieval and histological analysis of the hybrid case showed minor amounts of wear, 

however tissue responses included fibrocartilage generation, heterotopic 

ossification, and necrosis due to inflammation.  The second case showed signs of 

endplate impingement and adverse local tissue reactions (ALTRs) in intradiscal and 

cystic tissues. In this second, impingement case, the amount of polyethylene wear 

debris was relatively low, but there was CoCr wear debris and associated 

inflammation. In both cases, inflammatory tissue responses may have contributed to 

the osteolytic lesions.  

 One difference between the hybrid and non-hybrid case was the use of BMP-2. 

The hybrid patient was exposed to BMP-2 on five occasions, in comparison to the 

patient that had a 1-level TDR who received none. Although osteolysis was a late 

observation after BMP-2 application, the hybrid patient only sought medical attention 

due to pain. A number of tissue responses to BMP-2 have been noted after spine 

surgery including heterotopic ossification observed in the hybrid patient’s retrieved 

tissue [1, 7, 12]. Although previously believed to be asymptomatic, heterotopic 

ossification can lead to delayed neural compression and pain [7]. Furthermore, recent 

studies reported increased resorption rates with the use of BMP-2 around implants, 

raising the question whether BMP-2 contributes to osteolysis in regions adjacent to 

the fused segment [6, 14]. Authors have reported asymptomatic osteolysis after 

interbody fusion and attributed bone loss to endplate violation during disc space 

preparation and/or to overdosing of BMP-2 [11, 13, 17]. Whether BMP-2 has a dose-
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responsive effect on the activation of osteolytic pathways remains unclear, since an 

optimal BMP-2 dose for fusions is still not agreed upon.  

 Osteolysis, along with tissue reactions involving mixed immune responses have 

been previously reported in a CHARITÉ by Kurtz et al. [9], but these devices consisted 

of polyethylene cores that were gamma-air-sterilized. ProDisc devices utilize 

conventional gamma-inert-sterilized polyethylene that has been previously reported 

in total joint replacements to significantly lower oxidation, wear debris generation 

and inflammation [5, 8]. ProDisc TDRs have been approved by the Food and Drug 

Administration, and only a limited number of complications have been documented 

with the use of either ProDisc-L or ProDisc-C. While hybrid fixation with ProDisc-L 

and fusion remains under clinical evaluation, there have been no previous reports of 

osteolysis with the use of ProDisc-L.  However, with use of ProDisc-C for cervical TDR, 

one exceptional case of progressive osteolysis was reported and attributed to a 

possible immune-mediated metal sensitivity reaction [16].  

 In contrast to the minimal immune reaction in the hybrid case, there were 

substantial ALTRs in the intradiscal and cyst tissue of the non-hybrid case. Wear 

debris-induced inflammation is known to mediate osteolysis; thus, impingement and 

subsequent pro-inflammatory processes may explain the clinical symptoms and 

radiographic progression seen in the non-hybrid case [15]. All samples of cyst tissue 

showed signs of chronic inflammation and lymphocytic infiltration which were 

similar to ALTRs to metal ions from implant corrosion of metal-on-metal total hip 
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replacements (THRs) [3]. These findings suggest that ALTRs from THRs share some 

characteristics with the cyst tissue from the non-hybrid case.  

 The present study reported two rare osteolysis cases following implantation of 

the Prodisc-L. In one case, wear-debris induced inflammation; in the second case, 

inflammation induced heterotopic ossification. As surgeons incorporate ProDisc 

technology into their clinical practice, the rare complication of osteolysis and its 

occurrence should be taken into account when defining contraindications for spinal 

arthroplasty.  
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CHAPTER 7 

Conclusions & Future Directions 

7.1 Conclusions 

 This research was conducted to evaluate the present efficacy of TDR 

technology by performing retrieval analyses of revised implants and periprosthetic 

tissues. Much of what is known about conventional or gamma-inert-sterilized metal-

on-UHMWPE TDRs was originally derived from in vitro simulations. However, given 

the extensive complexity of the musculoskeletal system, there is no in vitro testing, 

simulation or analytical modeling that can truly and fully predict the performance of 

these implants. Furthermore, in vivo testing of spinal implants in animal models to 

assess the interactions of the living tissue environment provide limited and 

subjective information on implant performance, tissue-implant interface and 

biocompatibility due to varied anatomy, healing rates and biomechanical 

environments. For this reason, it is hard to overstate the importance of implant 

retrieval analyses of implants and tissues, as they provide unique and crucial 

insights of in situ performance, along with vital information on mechanisms of both 

failure and success.  

 Implants and their corresponding tissue retrievals from eleven patients 

revised for TDRs were extensively studied and documented in this body of work. 

Despite the small sample size, this is presently the only research (to the author’s 

knowledge) on contemporary TDR implant and corresponding tissue retrievals. This 
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study has uncovered several unknown issues related to UHMWPE wear generation 

and subsequent biological responses in the lumbar spine. Specifically, this 

dissertation addressed the following broad questions: (1) Are wear particles and 

associated biological reactions present in tissues from patients revised for painful 

gamma-inert sterilized TDRs and how do design and/or biomaterials of these newer 

TDRs compare to each other and previous devices? (2) Are UHMWPE wear debris 

and particle-induced inflammation linked to implant and/or clinical factors and are 

both associated with the production of inflammatory factors that can potentially 

contribute to the development of pain in TDR patients? (3) Is there a relationship 

between inflammation, vascularization and innervation in the periprosthetic lumbar 

spine and how do these wear-debris-induced morphological changes contribute to 

the pathogenesis of particle disease?  

 To answer the first question, fixed- and mobile-bearing implant retrievals 

and their corresponding tissues were evaluated. Not only was this investigation 

itself novel, but this was the first study to identify and quantify wear debris and 

corresponding biological reactions in periprosthetic tissues from contemporary 

gamma-inert-sterilized TDRs. UHMWPE wear particles were characterized and the 

number, size and shape were found to affect tissue inflammatory responses. 

Interestingly, no association was shown between wear debris generation and the 

TDR designs when comparing fixed- versus mobile-bearing devices. Overall, the 

current generation of contemporary TDRs were found to result in reduced wear 

debris generation and inflammatory reactions compared to historical or gamma-air-

sterilized TDRs.   
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 Investigating the immune response to UHMWPE wear particles by evaluating 

immunohistochemical markers of inflammatory pain resulted in some intriguing 

and unexpected results. First, given that malpositioning was a concern in a couple of 

revision patients, implant complications such as impingement and clinical factors 

such as implantation time were expected to affect the extent of biological responses; 

however, there was no indication of this based on correlation studies with the 

inflammatory pain factors. Interestingly, all six inflammatory factors were 

expressed to a greater extent in TDR patient tissues compared to IVD tissues from 

patients with no history of back pain. Factors were also more highly expressed in 

TDR patient tissues compared to DDD patients (with non-implant related pain). 

Further investigation revealed the interesting finding that separating TDR tissues 

with and without wear debris provided distinct differences in inflammatory factor 

expressions. Based on this finding, TDR patient tissues were pooled and wear 

particle number was found to be correlated with TNFα, IL-1ß, VEGF, NGF and 

Substance P, but not PDGFbb. Given that macrophages have the potential to secrete 

all of the above factors, their numbers were quantified and also found to be 

correlated with the expression of these five factors. Taken together, this report was 

the first to show that UHWMPE wear debris and subsequent inflammation in the 

periprosthetic spine may lead to the production of factors that are directly 

associated with inflammatory pain and nociception.  

 These results led us to identify the potential missing links that can connect 

wear-debris induced inflammation to pain: vascularization and innervation. 

Building on the hypothesis that in-growing blood vessels are providing a conduit for 
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nerve fibers, it was found that all of the aforementioned inflammatory pain factors 

correlated with increasing numbers of blood vessels. Additionally, the innervating 

factors NGF and SP (which are primarily be secreted by neurons) were localized to 

the vascular channels. Lastly, comparing blood vessel number with factor 

expression and macrophage number in images from tissue sections with low and 

high vascularity suggested the possibility of a temporal link between increased 

inflammatory factors, macrophages and angiogenesis. Even though this study does 

not provide evidence for the presence of actual nerves or pain in the discal regions, 

unveiling and linking wear-induced inflammation and innervation factors with 

associated morphological changes of increased vascularization provides an 

important insight in the pathology that may directly contribute to pain sensitization.  

The data generated from this study provide crucial insight into the spectrum 

of neuroimmunological responses to UHMWPE wear debris, and help to identify 

biological pathways associated with pain that can be targeted to potentially prevent 

the need for TDR revision surgery. It is worth noting that the TDR hardware from all 

of the patients in this study were relatively uncompromised from a mechanical 

standpoint, and thus, finding ways to either minimize wear-debris generation even 

further and/or inhibiting wear-induced inflammatory cascades will be invaluable to 

the field of total disc arthroplasty to improve clinical outcomes. 

7.2 Implications & Future Directions 

7.2.1 Therapeutic Strategies for Treatment 
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 A better understanding of the pathogenesis of inflammatory particle disease 

in the spine, provided the TDR hardware remains mechanically uncompromised, 

allows the potential to develop novel therapeutic strategies to inhibit and/or 

mitigate pain sensitization. The importance of alleviating wear-debris associated 

pain in TDR patients is to improve the overall longevity of TDR implants and avoid 

complex and high-risk revision surgical procedures. Based on the findings embodied 

in this dissertation, these strategies include: (1) modulation of macrophage 

phenotype; (2) local inhibition of TNFα; and (3) local inhibition of VEGF.  

Macrophages, like other immune cells, have various phenotypes or 

polarization states. As such, macrophages are involved in not only innate 

inflammation and adaptive immunity, but also tissue repair/regeneration. Thus, 

modulation of the macrophage polarization state could provide a target for 

therapeutic intervention of particle-disease-induced pain. In our study, the 

significant amounts of TNFα and IL-1ß, in conjunction with a high ratio of VEGF to 

PDGBbb in TDR periprosthetic tissues, suggested that M1 macrophage pro-

inflammatory responses predominated over anti-inflammatory/healing responses 

driven by M2 macrophages (see Chapter 4). A number of joint replacement studies 

have also reported similar findings suggesting an M1 rather than an M2 response in 

periprosthetic tissues [1, 3, 5-7, 14, 16, 20, 21]. Furthermore, preliminary in vitro 

and in vivo prospective investigations on the modulation of macrophage 

polarization from an M1 to an M2 response have reported favorable outcomes. 

Specifically, the addition of interleukin-4 (IL-4) to cultured human peripheral blood 

monocytes, which had been activated by wear particles, promoted macrophage 
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polarization from M1 to M2 and reduced the production of pro-inflammatory factors 

TNFα, IL-1ß and interleukin-6 (IL-6) [4, 15]. In a separate in vitro study, the addition 

of IL-4 to cultured monocytes reduced TNF-α production as the macrophage 

phenotype was sequentially converted from a neutral M0 phenotype to M1 and then 

to an M2 phenotype [10], suggesting IL-4 treatment is effective on infiltrating or 

activated macrophages rather than modulating resident macrophages that are 

neutral [13]. Consistent with in vitro findings, recent in vivo studies using rodent 

models to investigate particle-induced inflammation and osteolysis also showed IL-

4 treatment suppressed TNFα production and attenuated bone resorption [11, 17]. 

While more research is certainly necessary (especially in the spine) to clearly 

understand macrophage polarization in regards to implant wear debris, early IL-4 

studies provide evidence that it may be possible to suppress or attenuate wear-

debris-induced inflammation and thus down-stream responses that lead to pain.  

  While the above studies showed that modulating macrophage polarization 

also suppresses TNFα production, this potent pro-inflammatory cytokine can serve 

as an attractive therapeutic target by itself in the spine. In our study, TNFα 

production in TDR periprosthetic tissues was integrally associated with wear-

induced inflammatory pain, as it was strongly correlated with the number of wear 

particles, CD68+ macrophages, blood vessels and the presence of the neural 

innervation and hypersensitization agents, NGF and substance P (see Chapter 4 & 5).  

Furthermore, TNFα showed a progressive correlation with low and high vascularity, 

suggesting that it may be playing an essential role in regulating the angiogenetic 

progression/innervation that can contribute to pain sensitization. Hence, TNFα 
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inhibitors or blockers may be effective in inhibiting or suppressing wear-induced 

inflammatory reactions that lead to pain. A number of TNFα blockers have already 

been cleared by the FDA and deemed effective for the treatment of rheumatoid 

arthritis (RA), a disease characterized by inflammation and pain. Some of the 

commonly used drugs that block TNFα binding to its receptor include infliximab, 

etanercept and adalimumab, all of which have been shown to successfully reduce 

inflammation in randomized double-blind placebo-controlled studies [2, 8, 18, 19]. 

More recently, these inhibitors have been used to decrease inflammation in a 

number of autoimmune diseases besides RA [12]. Given the relatively low and 

infrequent side effects of these drugs (compared to other immunosuppressive and 

cytotoxic agents) [12], future research investigating their therapeutic potential in 

the periprosthetic spine may be warranted.     

 Although inflammation is the driving force of wear-induced adverse 

reactions, this body of work showed vascularization is arguably the most important 

link that is specific to the pain-associated pathogenesis of particle disease in the 

lumbar spine; and thus can serve as a relatively new avenue of research for 

therapeutic intervention. In this regard, the angiogenic factor VEGF, like TNFα, was 

strongly correlated with the number of wear particles, CD68+ macrophages, blood 

vessels and with the presence of the neural innervation and hypersensitization 

agents, NGF and substance P (see Chapter 4 & 5). Furthermore, VEGF was not only 

produced by inflammatory cells including fibroblasts and macrophages, but it was 

also produced by endothelial cells. Hence, it can be hypothesized that VEGF 

inhibitors would reduce blood vessel ingrowth and presumably innervation in 
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periprosthetic spine tissues. Although FDA-approved VEGF inhibitors like 

bevacizumab have been well-established to inhibit angiogenesis in ovarian cancer 

[9], there is a dearth of knowledge on their use in the context of inflammatory-

mediated pain, and therefore warrants future attention.     

7.2.2 Cervical Total Disc Replacement  

 The systematic review presented in Chapter 2 showcased current cervical 

retrieval studies of metal-on-polymer TDRs with fixed-bearing designs reporting 

similar outcomes of wear debris generation and tissue responses to lumbar TDRs. 

However, this was only based on five studies with very limited sample sizes and 

study designs; there still exists a scarcity of data to clearly understand implant wear 

debris generation and biological responses that are specific to the cervical spine.  

Interestingly, as of the time of this writing, only one lumbar, but five cervical disc 

artificial disc designs have been approved by the Food and Drug Administration 

(FDA). This raises the question of whether artificial disc replacements fare better in 

cervical regions. Cervical segments and discs are anatomically smaller and 

biomechanically experience less stresses and movements than lumbar regions [22]. 

Whereas, the vertebral bodies of the lumbar spine are much larger and transversely 

wider in order to withstand and transmit discal loads that are substantially greater 

than the cervical regions. For this reason, it can be hypothesized that the clinical 

wear performance of cervical TDRs may possibly be superior to lumbar devices. 

Considering that chronic neck pain can be just as debilitating as lower back pain, 
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extrapolating both the pitfalls and successes of lumbar TDR technology to the 

cervical regions could prove very valuable.  
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Appendix 

1. Relevant MATLAB Scripts 

1-1. Polarized Light Input File 

%polyprocess.m 
 

%% Automated Selection of DAB-labeled Tissue 
% By SYV 
 

%script to segment polyethylene from background 
%read the fully polarized and brightfield images 
iorig = imread('filename.jpg'); 
ibf = imread('filename.jpg'); 

  
%part1: polarized particle masking 
%select the 'blue' channel 
p1 = iorig(:,:,3); 

  
%threshold the blue channel 
%note: the .2 is image dependent, seems to work ok.  Range is from 0 to 

1 
pth = im2bw(p1,1.0); 

  
%remove 'small objects' that are camera noise 
%NOTE, 'nthresh' is camera/imaging dependent! 
%When you correctly perform Black/White References, this value can be 

set 
%to 0. 
nthresh = 00; 
apth = bwareaopen(pth,nthresh); 

  
%build new RGB image for displaying only poly particles 
for i=1:3, nap(:,:,i) = uint8(apth).*iorig(:,:,i);end 

  

  
%display poly segmented image 
%here is your chance to change nthresh accordingly 
%imshow(nap); inactivate this line to get rid of the first image 

  
%count poly pixels (area of poly)  
inap = rgb2gray(nap); 
ppix = sum(sum(apth)); 

  
%part2: brightfield masking 
gibf = rgb2gray(ibf); 

  
%threshold, note: must select value, 0.75 seems to work 
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%the ~ inverts the image to make tissue white 
gibfth = ~im2bw(gibf,.8); 

  
%count 'tissue' pixels 
tpix = sum(sum(gibfth)); 

  
%easy to compute poly vs. tissue region ratio and display result 
ratiopoly = ppix / tpix; 

  
%display poly and tissue maps 
%figure,imshow(apth*29 + gibfth*61,colorcube); 

  
[L,num] = bwlabel(apth,8); 

  
pnum = num; 

  
%Enable these two command lines if you want to look at original 

polarizied 
%light an brightfield. 
%figure,imshow(L); 
%figure,imshow(iorig); 

  
imwrite(L, 'filename.jpg'); 
imwrite(apth*29 + gibfth*61,colorcube, 'filename.jpg'); 

  
subplot(2,2,1), subimage(iorig) 
subplot(2,2,2), subimage(L) 
%subplot(2,2,3), subimage(ibf) 
%subplot(2,2,4), subimage(apth*29 + gibfth*61,colorcube) 

  

  

 

1-2. DAB Quantification Input File 

% DAB.m 

 

%% Automated Selection of DAB-labeled Tissue 
% By SYV 

  
close all 

  
%% Load in images and process 
files = dir('filename.jpg'); 
for k = 1:(numel(files)) 
    OrigImg=imread(files(k).name); 
    % Splitting the image into R, G, and B matrices 
    R=OrigImg(:,:,1); % The first page is red 
    G=OrigImg(:,:,2); % The second page is green 
    B=OrigImg(:,:,3); % The third page is blue 
    BN=(255*((B)./(0.9*(R+G+B)))); % Normalizing (see Ref. Brey et 

al.,2003); Use 80-90% RGB if tissue is over-stained; Use 90-99% B if 

tissue is under-stained, but stay consistent between stains  
    %BNinv=sum(255-BN,3); % Inverted image to highlight DAB-labeling  
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    %Save processed image 
    imwrite(BN,[ 'filename.jpg' files(k).name]); 
end 

  
%% To view a processed image 

  
%ProcImg = imread('filename.jpg'); 
%figure,hold on 
%imshow(ProcImg); 
%hold off 

 

2. Relevant ImageJ Macros 

2-1. Macro for Area Analysis of Transmitted Light Images 

run("8-bit"); 

 

run("Set Scale...", "distance=3.887 known=1 pixel=1 unit=µm"); 

 

setThreshold(100, 200); 

 

//run("Threshold..."); 

 

run("Measure"); 

 

2-2. Macro for Particle Analysis of Processed Polarized Light Images 

//Run only on 20X Polarized Light Images post-Matlab. 

run("8-bit"); 

   

//run("Threshold..."); 

setAutoThreshold("Default"); 

//run("Threshold..."); 

run("Convert to Mask");  
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//The following commands set the appropriate scales of pixels/µm.  The 

default distance=3.887 for 20X images.  Then a second threshold is 

performed to prepare for the particle analysis. 

 

run("Set Scale...", "distance=3.887 known=1 pixel=1 unit=µm"); 

//run("Threshold..."); 

setAutoThreshold("Default dark"); 

  

run("Set Measurements...", "area centroid standard perimeter fit shape 

area_fraction display redirect=None decimal=3"); 

 

//To use the right analysis, remove the “//” from the beginning of the 

“run” command. 

 

//Line for All Particles (ECD) 

run("Analyze Particles...", "size=0.2298-Infinity circularity=0.00-1.00 

show=Outlines display exclude summarize"); 

 

//Line for particles less than 1 µm (ECD) 

//run("Analyze Particles...", "size=0.2298-0.785 circularity=0.00-1.00 

show=Outlines display exclude summarize"); 

 

//Line for particles less between 1 and 10 µm (ECD) 

//run("Analyze Particles...", "size=0.785-78.53 circularity=0.00-1.00 

show=Outlines display exclude summarize"); 

 

//Line for particles greater than 10 µm (ECD) 

//run("Analyze Particles...", "size=78.53-Infinity circularity=0.00-

1.00 show=Outlines display exclude summarize"); 

 

III. Relevant Image-Pro Plus Macro 

3-1. Macro for Automated CD68+ DAB-Stained Cells 

Sub macrophage() 
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Dim x As Integer 

Dim DocId As Integer 

For x = 1 To 50 

ret = IpDocGet(GETACTDOC, 0, DocId) 

 ret = IpCmChannelExtract(CM_RGB, CM_RGB, 2) 

 ret = IpBlbShow(1) 

 ret = IpSegSetRange(0, 0, 100) 

 ret = IpSegPreview(CURRENT_C_T) 

 ret = IpBlbEnableMeas(BLBM_ROUNDNESS, 1) 

 ret = IpBlbSetFilterRange(BLBM_ROUNDNESS, 0.1, 7.0) 

 ret = IpBlbSetFilterRange(BLBM_AREA, 50.0, 200000.0) 

 ret = IpBlbCount() 

 ret = IpBlbUpdate(0) 

 ret = IpBlbSplitObjects(1) 

 ret = IpDcShow(1) 

 ret = IpDcShow(3) 

 ret = IpDcSelect("Image", "Name", 0) 

 ret = IpDcSelect("Count_Size", "Count", 0) 
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 ret = IpDcShow(1) 

 ret = IpDcSet(DC_AUTO, 0) 

 ret = IpDcUpdate(DC_FETCH) 

 ret = IpDocClose() 

 ret = IpDocCloseEx(DocId) 

 Next x 

End Sub 
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