

SELEBAND ASE SHOWCASE

Featuring Poster Presentations of
Life Saving Solutions
Addressing Unmet Medical Needs

2019 SENIOR CELEBRATION AND SHOWCASE

Thursday, May 30, 2018 - 5:00 PM

George D. Behrakis Grand Hall, 3210 Chestnut St. Philadelphia, PA 19104

(Inside Creese Student Center, on Chestnut Street, between 32nd and 33rd Streets.)

Program of Events

5:00 PM – 5:15 PM	Showcase Event Registration
5:15 PM – 5:25 PM	Welcoming Remarks Paul W. Brandt-Rauf, Dean and Distinguished University Professor
5:25 PM – 7:00 PM	Poster Presentations, Judging, and Networking
7:00 PM – 7:15 PM	Awards Ceremony Andres Kriete, Associate Dean Wan Shih, Professor
7:15 PM – 7:30 PM	Concluding Remarks Paul W. Brandt-Rauf, Dean and Distinguished University Professor

Available online at drexel.edu/biomed

Qı	uad C	harts Available onling drexel.edu/bion
1	Team 1	A 3-D Flow System Device for Improved Production of Stabilized Ultrasound Contrast Agent Microbubbles
	Team 2	Mechanical Properties of a 3D Printed GelMA Scaffold
2	Team 3	Sensor Based Design for Monitoring of the Bone-Screw Interface
_	Team 4	Rig for Simulating Post Surgery Assessments of Shoulder Joint Motion
3	Team 5	In Vitro Model of the Pancreatic Stroma for Drug Delivery Testing
3	Team 6	3D Printed Palatal Obturators for Pediatric Cleft Palate Patients
4	Team 7	Tissue Phantom in Speed of Sound Lab
7	Team 8	Mechanical Analysis of Prosthetic Suspension in Transfemoral Amputees
5	Team 9	Assistive Laboratory Device for Students Who Are Blind or Visually Impaired
3	Team 10	Laryngoscope Cover for Pediatric Intubations
6	Team 11	Patient-Specific Alignment Device for Total Ankle Replacement
•	Team 12	Design of Porous PEEK Topologies Using Fused Filament Fabrication
7	Team 13	Electro-acoustic Optimization of Ultrasonically Assisted Chronic Wound Healing Applicator
	Team 14	MXene Filter for Hemodialysate Regeneration

Team 15

Team 16

Team 17

Team 18

Team 19

Team 20

Team 21

Team 22

Team 23

Team 24

Team 25

8

10

11

12

13

Design of Optimized Detection Method of Breast Cancer Specific Molecule

Deep Tissue Injury (DTI) Detection Using Piezoelectric Finger (PEF) Technology

Electromyogram Based Interface for Real-Time Tracking of Natural Limb Activity

Mid-Fidelity Simulator Model for Training Cesarean Section in Kampala, Uganda

Rhythmic Auditory Stimulation for the Enhancement of Declarative Memory

A Novel Micro-Fabricated Device for Non-Viral Transfection for Adoptive Cell

Polarized Light Apparatus for Analyzing Collagen Structure Within Ligaments

3D Printed Bioresorbable Antibiotic Clip for Prevention of Spinal Surgical

Assistance Call Device for Advanced ALS Patients

Non-antibiotic Antimicrobial Coating for Urethral Catheter Application

Astronaut Hibernation Monitor

Therapy Manufacturing

Under Load

Site Infection

for Avatar Control in Virtual Environments

A 3-D Flow System Device for Improved **Production of Stabilized Contrast Agent** Microbubbles

Bailey Leadford, Ajin Abraham, Bini Thankachan, Devin Whitlark

Dr. Margaret Wheatley, Brian Oeffinger, and Dr. Wan Shih

Medical Need

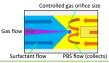
Microbubble contrast agents increase acoustic impedance boundaries between blood vessels and tissue, increasing contrast of ultrasound image. Current methods are expensive, time-consuming, inefficient, and overall

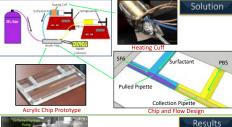
unreliable.

· Heat surfactant to flow

Objective: Design a device to create microbubbles of specific and consistent size and composition with minimal material waste.

Approach


Microbubble requirements:


- Less than 6 um diameter
- Gas core stabilized by surfactant shell Low polydispersity index (PDI)

Microbubble Composition

Goals of Device:

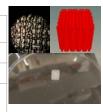
- Create microbubbles with a PDI <0.2
- · Material efficiency above 15%
- · Track formation microscopically

Device assembly and testing are underway: Heating element assembled and functional

- Multiple prototypes in assembly with good
- results in pipette alignment Tests have resulted in bubbles too large
- Flow rates of surfactant, PBS and SF6 must
- be fine tuned to decrease bubble size
- Chip assembly process must be perfected to reduce leakage

Mechanical Properties of a 3D Printed GelMA Scaffold

Rehani Brahmbhatt, Albina Jamekshova, Alan Liu


Dr. Kara Spiller

Need: 1 million distal radius fractures worldwide resulting in about \$2 billion in hospital costs. Current solutions can be very costly and often require a second


Objective: Develop a porous, low-cost, biocompatible 3D printed scaffold for rapid bone regeneration

Approach:	
Requirement	Specification
E of Struts	60±30 kPa
Pore Size	200-500µm
E of Scaffold	Must maintain shape

Solution: 3D printed gelatin methacrylate scaffold

Results and Impact:

- Average elastic modulus of struts: 68.5±7.86 kPa
- Average pore size: 273.161±40µm
- Average elastic modulus of porous constructs: 0.026±0.003 Pa Impact: Provide a more cost effective alternative for bone tissue repair

Sensor Based Design for Monitoring of the **Bone-Screw Interface**

Walker Alexander, Sara Jubanyik, Spiro Kokolis, and Praneeth Meka

Dr. Joseph Sarver and Dr. Marek Swoboda

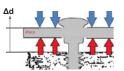
MEDICAL NEED

Deterioration at the bone-screw interface is an important mode of failure for internal fracture fixation devices, but researchers do not have the adequate tools to study this failure ex vivo

Current test equipment is not sufficient enough to accurately test the real life conditions of varied loading scenarios across multiple screws

SOLUTION

- Two accelerometers will be used to gather positional data at both the bone and screw
- By looking at "screw movement" relative to "bone movement," the quality of the interface can be determined


Accelerometers were chosen High Sensitivity (300 mV/g) and Small Operating Range (±3g)

APPROACH

The screw will displace as the bone-screw interface has been deteriorated. Measuring the relative displacement (∆d) between the bone and screw can show if movement has occurred

and the interface has

weakened.

relative displacement with a 1-D spatial resolution of <0.1mm at a frequency of >10 Hz

Initial Verification testing has shown this accelerometer-based solution will need an accelerometer that is out of the current budget, however the current design may have utility in detecting full deterioration

The impact will be an opportunity for to gather data directly from the screws allowing for a better characterization of screw failure at the hone-screw interface

Rig for Simulating Post-surgery Assessments of Should Joint Motion

Donald Arnold, Christopher Moali, Matthias Recktenwald, and Jennifer Sanville

Dr. Joseph Sarver and Dr. Michael Hast

Background

 Optional sutures need testing in clinically relevant motions to evaluate failure

Cadaveric models used.

but no current test setup creates these motions in a lab

Solution

Approach

Pendulum swina:

- 0.027<v< 0.054 m/s
- 10°<0<20°
- 0.5<f<1.0 Hz

Support 2.24<W<4.54 kg

Results & Impact

-Circle fitting to collected data

-Impact: cost

effective, repeatable

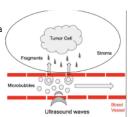
testing method for cadaver studies

TEAM

In Vitro Model of the Pancreatic Stroma for **Drug Delivery Testing**

Daiana Avram, Gregory Burns, Sukhdeep Gill, and Iulia Innamorato

Dr. Margaret Wheatley and Dr. Adrian Shieh

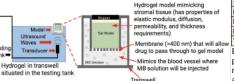

Approach: To design an in vitro 3D experimental model

that mimics the mechanical and transport properties of

the pancreatic tumor stroma that can be used to test

Clinical Need

- Pancreatic adenocarcinoma (PDAC) is one of deadliest cancers
- Once diagnosed, 5 year survival rate of 6%
- Experimental drug delivery system (DDS) being developed at Drexel, BUT no realistic model to test it


meet Diffusion

the efficacy of the MB DDS.

for

Solution

MB Drug Delivery System Gel: 0.8% Gellan Gum

Results/Impact

	Requirement	Results
Elastic modulus	5-30 kPa	26.14 ± 3.83 kPa
Diffusion Coefficient	2.44E-11 m ² /sec ±10%	7.32 E-11±1.93E-11 m ² /sec
Permeability	2.67E-15 m ²	8.79E-15 ± 4.53E-15 m ²
Thickness	5 mm	5.22 ± 0.22mm

Expected to further drug treatment options for PDAC, as it will provide an in vitro model to further develop and improve current methods that can go on to help the 45,000 people affected annually.

TEAM

Testino

3D Printed Palatal Obturators for Pediatric **Cleft Palate Patients**

Operation

₩Smile

Amanda Barkan, Hazara Begum, Peiwen Chen, Gerard Dimen, and Jie Zhi

Dr. Adrian Shieh, Dr. Jaimie Dougherty, and Timothy Reppert

Clinical Need

Design Need

- 1 in every 700 children is born with cleft palate
- · Operation Smile has limited capacity for free reconstructive surgeries
 - ~44% of patients are turned away

Alveolar Arch Collapse occurs in 50% of

unilateral cleft palate patients due to insufficient intraoral support

Solution

Obturator Material	Flexural Modulus (MPa)	Flexural Strength (MPa)
DENTCA Denture	2000	65
Rigid Polyurethane	1900	45

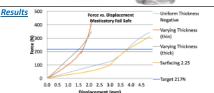
Design 1 - Surfacing - Uniform Thickness

Design 2 - Cleft Palate Negative - Non-Uniform Thickness

Objective

To design a 3D printed palatal obturator that will prevent alveolar arch collapse for pediatric preoperative unilateral cleft palate patients

Approach



Palatal Obturator with Cleft Palate

Unilateral Cleft Palate

Requirement	Acceptance Criteria
Withstands 8.9N	Medial
Alveolar Arch	x-displacement
Collapsing Force	<0.05 mm
Withstands 217N Masticatory Fail-Safe Force	Yield point occurs before 217N

· Varying thickness obturators pass masticatory fail-safe requirement

- · Utilization of 3D printing and software to fabricate palatal obturators
 - · Operation Smile can provide untreated patients with an obturator until surgery becomes available

TEAM

Tissue Phantom in Speed of Sound Lab

Alec Belousov, David Corsan, David Ing, and Prashant Patel

Dr. Peter Lewin

Need

The biomedical ultrasound lab is lacking biomimetic phantoms for use in the protocol. The materials currently used, rubber and acrylic, do not have the same properties as tissue, making it difficult to convey the

medical relevance.


Approach

Develop soft and hard tissue phantoms with a speed of sound of 1600 m/s and 4000 m/s respectively.

Speed of Sound key material properties defined by

$$c = \frac{1}{\sqrt{\rho_0 K}}$$

c = speed of sound in tissue (m/s) $\rho_0 = Average density (kg/m^3)$ $K = Compressibility (m^2 \cdot N^{-1}) - stress applied$

Solution

Epoxy phantom

1' x 1' length and width

Density

Soft tissue: 1.06 × 10⁶ g/m³
 Hard tissue: 1.9 × 10⁶ g/m³


Compressibility

- 3. Soft tissue: 3.97 × 10⁻¹³ Pa⁻¹
- Hard tissue: 3.8 × 10⁻¹⁴ Pa⁻¹

Results and Impact

- Verification testing and results
 1. Density Measurements
- Compressibility Testing
- Lab Protocol Validation

The speed range from 1400-1600 (m/s) seen in the graph. The epoxy phantom is a biomimetic material that approximates the properties of skeletal muscle. This enhances the learning experience in the lab by providing a material with properties that are relevant in the context of the biomedical engineering curriculum.

I LAW

comfort.

Mechanical Analysis of Prosthetic Suspension in Transfemoral Amputees

Max Bornstein, Stephanie Gebbia, Jon El-Khoury, and Christian Hamm Dr. Ken Barbee and Dr. Meg Lockard

Clinical Need: The residual limb of a lower limb amputee is subjected to significant forces. These forces can affect prosthesis **function** and

Current Solutions: Existing evaluatory systems focus on the distal limb-prosthesis interface.

Validation: To validate the sensor suite, a **test limb** is being developed. This test limb is comprised of *Synbone* ® bone simulate and *Humimic™* ballistics gelatin. The test limb will be loaded with a biological schema to mimic **qait**.

Solution: A sensor suite will gather data in the region of interest - the proximal limb-prosthesis interface - assessing forces due to interactions from the pubic ramus.

Sensor Outbut

Data Processing

PC via serial outbut

Software Analysis

Results and Impact: This system is being developed as a **diagnostic** aid to facilitate prosthetists during fittings and office visits.

Conversations with external stakeholders have indicated that **data-driven** solutions may prove favorable when liaising with insurance companies.

EyeLab: An Assistive Laboratory Application for Students Who Are Blind or Visually Impaired

Haoyang Chen, Aida Kupa, Junyu Lu, and Dr. Catherine von Reyn Pushpita Rahman

Side View

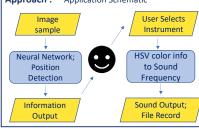
Problem and Need: Legally blind persons are highly underrepresented in STEM (especially chemistry). K-12 participation in laboratories increases STEM interest. For blind students interacting with chemicals is unsafe and identifying physical attributes, specifically color, is difficult.

Objective: Develop a visual-substitution application to identify chemistry equipment and track color in real-time.

Solution:

Object identification, position detection, and color tracking.

Consists of


- iPhone App
- Phone Mount Chemical Trav

iPhone

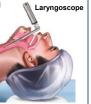
Mount

Results:

Verification Test	Result	Req.
Neural N. Accuracy	94.8%	>90% ✓
Latency	32.9 ± 16.9ms	<90ms √
Sampling Rate	11.11Hz	>10Hz √

Impact: Increased independence and participation of blind students in Chemistry laboratories. Allowing STEM fields to potentially gain access to 54 million legally blind individuals worldwide.

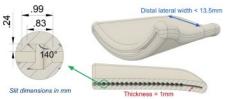
Laryngoscope Cover for Pediatric Intubations


Kenny Chen, Irelyn McIver, Anley Samuel, and Amber Saraceni

Dr. Lin Han and Dr. Ian Yuan

Medical Need

A stainless-steel laryngoscope causes trauma in small and fragile pediatric airways, leading to a higher risk of complications in clinical settings.


Existing solutions apply too much pressure onto the tissues and/or are not fit for cost-efficiency and effectiveness.

Objective: To design a device that prevents larynx injuries occurring from current pediatric intubations.

Solution

Implement a silicone cover for the distal end of a Miller 1 laryngoscope. Intended Material: PDMS

Approach

Design a force absorbing silicone cover that is custom fit to the Miller 1 laryngoscope.

Angled cuts along the cover's interior surface will use anisotropic friction to ensure the cover remains on the blade. Resistance depends on pull direction.

Key Requirements Distal lateral width ≤ 13.5 mm Convex surface thickness ≤ 2 mm Tensile strength ≥ 1.51 MPa Withstand ≥ 20 N before slippage Fracture point under uniaxial loading with cover ≥ without

Results

Requirement	Test	Results	Pass / Fail
Tensile Strength	ASTM D412-16	1.80 MPa (PDMS 48A)	Pass
Fracture Point	3-Point Bend	4.83 N without cover	TBD
Applied Forces	Apply uniaxial shear force from blade with cover onto tissues	TBD	TBD

Impact: The final product will decrease the number of intraoperative complications from current pediatric intubation procedures and increase patient comfort.

1 1

Patient-Specific Alignment Device for Total Ankle Replacement

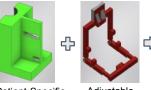
Shawn Cherian, Jacqueline Gorberg, and William McLaughlin

Dr. Sorin Siegler and Dr. Fred Allen

Clinical Need:

TAR surgery often results in malpositioning complications

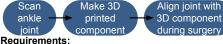
~ 44% revision rate after 10 years


Objective:

Approach:

Design improved alignment device that can be used with all anterior TAR implants

Solution:



Patient-Specific Component

Adjustable Alignment Frame

Total Alignment Construct

Res

- Joint alignment to ±5° of CT scan position
- Joint articulation of 15°-25°
- · Minimally obstructed surgical window
- Withstands max force of 70N

Results:

✓ Alignment Frame withstood > 70N

✓ Anterior TAR implant fits within surgical window

Impact:

Decreased malpositioning

Revision \$16,000 surgery need savings

12

Design of Porous PEEK Topologies Using Fused Filament Fabrication

Colin Burlingham, Kenny Cho, William Hartley, Anthony Law, and Wing Ni Lee

Dr. Steven Kurtz and Dr. Michael Frohberg

Need:

 $\label{eq:Metallic orthopedic implants} \rightarrow \text{rectify} \\ \text{bone pathologies or injuries}$

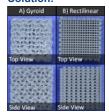
Difference in Young's modulus at implant/bone interface causes stress shielding - (a) reduction in bone density

Select a topology design for fabricating biomimetic bone structures via Fused Filament Fabrication

Post-Op Syrs Post-Op

Approach: Perform serie

Perform series of tests to compare material properties between chosen topologies and trabecular bone.



μCT Imaging

Compression Testina

Permeability Testing

Solution:

Printing Parameters -

A) Gyroid V2

Strut Width – 0.30 mm Pore Size – 450 µm Porosity – 72%

3) Rectilinea

Strut Width -0.25 mm Pore Size -600 μ m Porosity -70%

Results:

Topology	Pore Size (µm)			Young's Modulus (MPa)	Compressive Yield Stress (MPa)
Gyroid V2	706.0 X	65.82 🗸	557 ± 24.7 🗸	347.4 ± 9.53 🗸	18.68 ± 0.60 🗸
Rectilinear	588.6 🗸	73.20 🗸	1500 ± 10.7 X	217.0 ± 17.09 🗸	7.36 ± 1.16 🗸

Gyroid failed the pore size requirement and passed all other requirements. Rectilinear failed permeability requirement and passed all other tests.

Impact:

Minimize stress shielding of implant bone interface, which will reduce the need for revision surgery

Electro-acoustic Optimization of Ultrasonically Assisted Chronic Wound Healing Applicator

Abby Kaplan, Austin Devinney, Davin Ross, Josh Propper, and Sunyi Kim

Dr. Peter A. Lewin and Olivia Ngo

Background and Medical Need

What are Chronic Wounds?

- . Wounds that do not improve after 4 weeks or heal in 8 weeks
- Last on average 12 to 13 months
- . Impacts 6.5 million people annually

Objective:

Our goal is to improve the current electro-acoustic wound healing applicator to maximize acoustic output by identifying the most effective piezoceramic materials.

Our Solution Increase Acoustic **Excitation Voltage** Hypothesis: A higher d₃₃ will lead to larger acoustic output New Material Specifications: PZT-52 d₃₃: 420 (10⁻¹²C/N) Setal Cap PZT-54 d₃₃: 500 (10⁻¹²C/N) **Current Material Specifications:** PZT-26 d₃₃: 290 (10⁻¹²C/N)

Approach FDA Regulations Properties d₃₃ > 400 pC/N Ultrasound intensity of 100 mW/cm² to prevent inertial cavitation Requirements Hardware Acoustic output more than 19.5 kPa generated Maintain frequency of 20 to 100 kHz Excitation of less than 11 V FDA Regulations Approach: search New

PZT Ceramics

Results and Impact

	d ₃₃ Values (pCN)	Frequency (Hz)	Acoustic Output (kPa)
PZT-26	401.22 +/- 3.48	25.45 +/- 2.17	19.57 +/- 7.04
PZT-52	601.5 +/- 12.1	24.59 +/- 1.09	29.70 +/- 4.87
PZT-54	589.9 +/- 13.0	24.61 +/ 0.78	39.64 +/- 9.84

Impact: Utilizing the new PZT materials will allow us to minimize excitation voltage, which allows the applicator size and weight to be decreased. The lighter, smaller applicator increases portability and therefore quality of life for

MXene Filter for Hemodialysate Regeneration

Jonathan Fabian, Eliot Precetti, and David Yasgur

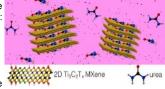
Dr. Yuri Gogotsi and Dr. Mykola Seredych

Need:

- 13.6% of the global population have Chronic Kidney Disease (CKD)
- Stage 4 & 5 are fatal if untreated
- · A portable hemodialysator would be healthier for patients but is currently too bulky Wearable artificial kidney with dialysate

regeneration system highlighted

Stage 5

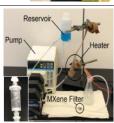

Reject

Solution:

Titanium Carbide MXene $(Ti_3C_2T_v)$:

 High Surface Area

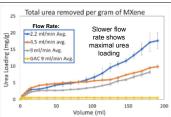
- Surface **Functional** Groups
- Biocompatible


Approach:

Find a sorbent that:

- does not chemically react Pump to dialysate
- ·Has a high affinity for urea
- Nontoxic

Main Requirement:


 Sorbent must be able to load at least 3.31 mg of urea per gram of sorbent

Results:

 MXene outperforms activated carbon (GAC) solutions

Maximum loading of 17.6 mg of urea per g of MXene

Design of Optimized Detection Method of Breast Cancer Specific Molecule

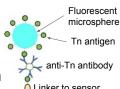
Priya Gupta, Raadiya Qadeer, Hayley Roth, and Virginia Tanner

Dr. Wan Shih and Dr. Wei-Heng Shih

Medical Need:

women develop breast cancer

25 % need re-excision surgery = \$4700+/procedure


Objective:

Develop a specific, molecular-based intraoperative margin assessment that limits the removal of healthy breast tissue

Solution:

Fluorescent microsphere used to detect Tn antigen on surface

Microspheres quantified using automatic image analysis

Linker to sensor Gold sensor

Target:

Rapidly identify Tn antigen, a surface molecule expressed in 90% of breast cancer cells

Tn antigen

Approach:

Reduce time of current protocols by:

(1) studying effect of temperature on antibody and Tn antigen interaction to reduce incubation time

(2) automating image analysis (< 1 min)

Results:

Optimal Temperature: 37 °C

Time Reduction:

Binding Protocol 30 min → 20 min Image Analysis 60 min → 1 min

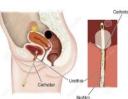
60 Binding Analysis

Optimized

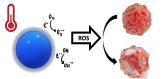
Impact:

Further development of this approach could improve surgical outcomes and reduce the need for re-excision surgery

Original


Non-antibiotic Antimicrobial Coating for **Urethral Catheter Application**

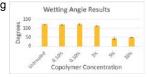
Alyson Hurlock, Sona Mathew, and Jamie Trinh


Dr. Wan Shih and Dr. Wei-Heng Shih

Need: 75% of patients that receive catheters obtain UTIs, which are often antibiotic resistant. Current solutions are antibiotic based and ineffective

Objective: Create a non-antibiotic. antimicrobial coating to reduce UTI occurrence

Approach: Incorporating quantum dot (QD) technology to induce bacterial apoptosis via generation of reactive oxygen species (ROS).



Requirements: (1) Coating angle <60° (2) Reduce bacterial growth by at least 50%

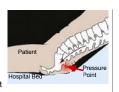
Solution: ZnS QDs Ethylene diamine & Sulfo-SMCC linkers Amphiphilic PMVE-MA/PVAc copolymer coating Silicone surface

Results:

- (1) Reduced contact angle from 120° to 45°
- (2) Bacterial testing shows copolymer coated silicone reduced bacterial growth by ~30%

Impact: Reduce UTI occurrence, its \$350 million healthcare burden, and the 2 million antibiotic resistant infections each year

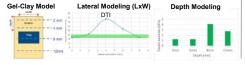
Deep Tissue Injury (DTI) Detection Using Piezoelectric Finger (PEF) Technology


Meenakshi Patel

Eric John, Amanda Joyce, and Dr. Wan Shih, Dr. Wei-Heng Shih, Dr. Michael Neidrauer, Dr. Michael Weingarten, and Dr. Richard Huneke

Need

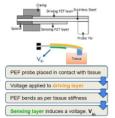
Deep tissue injury (DTI) are pressure injuries developed near bony prominences by sustained loading and shear forces


Hospitals need to detect DTI on admission and start early treatment to prevent complications

No Current Solutions can accurately detect length, width, and depth of DTI

Approach

A set of 4 PEF probes with increasing depth sensitivity to detect width, length and depth of DTI. Clay embedded in gel to represent DTI under skin. Elastic modulus recorded for a given probe increases if clay (DTI) was present



Solution

Use Piezoelectric Finger (PEF) device to measure Elastic Modulus(E) by measuring changes in induced voltage


$$E = \frac{1}{2} \left(\frac{\pi}{A} \right)^{1/2} (1 - v^2) \frac{K(V_{in,0} - V_{in})}{V_{in}}$$

E = elastic modulus of tissue; A = surface area of probe tip; v = Poisson's ratio oftissue; K = spring constant of PEF; V_{in.0} = voltage induced without tissue; V_{in} = voltage induced with tissue^[8]

Results

Successfully measured changes in elastic modulus of using PEF Sensor. A 2D heat map at depth of 2 mm displays the elastic modulus measurements of gel and clay DTI model.

Astronaut Hibernation Monitor

Davina Lee, Chloe Jonas, Parmpuneet Kaur, Sean Verillo, and Roxanna Tehrani

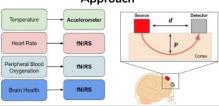
Dr. Kambiz Pourrezaei

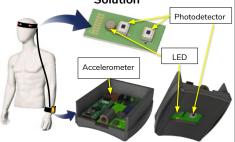
Need

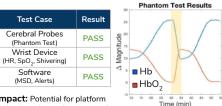
Hibernation for a manned Mars mission can reduce:

- Costs/Resources
- · Physiological/Psychological stress

A device is needed for:




Metabolic State Determination (MSD)


Approach

Solution

Conclusion

Impact: Potential for platform technology for applications such as patient stabilization and therapeutic hypothermia

□ Deoxygenate (Yeast) Reoxygenate (O₂)

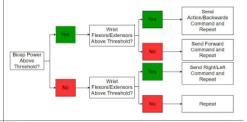
Electromyogram Based Interface for Real-Time Tracking of Natural Limb Activity for Avatar Control in Virtual Environments

Henry Tse, Khang Vu, Cory Zheng

Dr. Hasan Ayaz

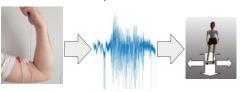
Need:

Virtual Environments are widely utilized and have diverse application domains

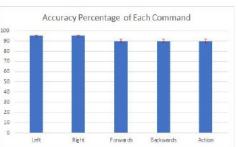


Human-computer interaction with Virtual Environments still relies on outdated input mechanisms designed for first-generation computational devices

There is an unmet need for low-cost, reliable, durable. and safe technologies that enable user to interact with Virtual Environments


Solution:

Muscle activity monitored, processed, and classified in real time with output in Mazesuite


Approach:

Utilize electrical activity generated in muscles during contraction as an input to a virtual environment

Classify muscle activity patterns into distinct commands for use in controlling a virtual avatar

Results:

Mid-Fidelity Simulator Model for Training Cesarean Section in Kampala, Uganda

Sbarro, and Victoria Utria

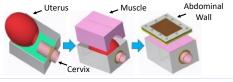
Doctor: Patient Ratio

1:24,725

Maternal Mortality

Rachel Junod, Michelle Krach, Lyndsey Dr. Michele Marcolongo and Dr. Owen Montgomery

Need: Uganda has a shortage of physicians trained in cesarean section (CS) leading to high maternal mortality


Objective: Create an accurate CS training model to improve accessibility and quality of training

Design Needs:

- Low Cost (\$1/use)

Anatomically Accurate 343 in Mechanically Accurate 100,000

Solution: Silicone model with removable, interlocking components for part task training and multiple uses

Results: Although some mechanical requirements were not met, physician stakeholders approved the model

_	Mechanically	Physician	
Component	Accurate	Approved	Imp
Skin	*	✓	Acc
Fat	✓	✓	affo
Muscle	✓	✓	traii
Uterus	*	✓	wor

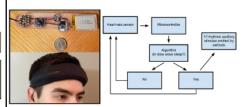
act: ess to ordable, urate ning rldwide

Approach:

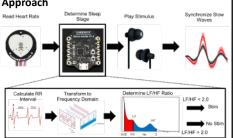
Rhythmic Auditory Stimulation for the Enhancement of Declarative Memory

Blake Kazaoka, Charles Preletz, Kaitlyn Reid, Dr. Donald McEachron and Sean Van Duser

Medical Need/Demographic


- Declarative memory increases as we age
- Increased life expectancy leads to more individuals suffering from the effects of aging.

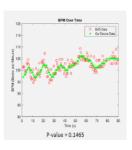
College Students


- Constantly changing schedule
- Late-night studying and early morning classes Objective

Improve a user's declarative memory by applying rhythmic auditory stimulation while they sleep, using a device that is affordable and comfortable to users without increasing total time slept

Solution

Approach



Results/Impact

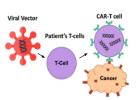
Results:

- The design was able to accurately record heart rate while worn
- The design is able to dispense the auditory stimulus properly

Impact: With the design ready for function, the validation of increasing declarative memory can occur

A Novel Micro-Fabricated Device for Non-Viral **Transfection for Adoptive Cell Therapy Manufacturing**

Michael Dasilva, Johnathan Lawless, and Pavan Patel

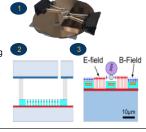

Noah Clay, Meredith Metzler, Dr. Joseph Fraietta, Dr. Michael Bouchard

Need

CAR-T Therapy is a novel treatment option for cancer.

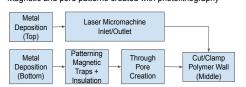
CAR-T Manufacturing requires sterile suites for viral engineering methods.

Non-viral approaches for gene delivery can reduce cycle times in clean rooms



Goal: Create an electroporation chamber for automation of magnetic cell isolation and non-viral gene delivery for CAR-T Therapy

Solution


Requirements:

- Inlet hole for pipetting
- 300µm electrode spacing
- 1x106 cell throughput
- Insulated magnetic traps
- (1) Early prototype design (2) Cross section
- (3) Schematic

Approach

- Microfabrication of the chamber with glass wafer substrates
- Magnetic and pore patterns created with photolithography

Results

Conclusion: Successful fabrication of the top and bottom wafers - dimensions 2, 3, and 5 out of spec but viable. Verification performed with digital microscopy and 2D profilometry.

Specifications Verified: 1. Pore Center-to-Center

- ~ 2. Through Pore Diameter
- 3. Magnetic Disk Diameter
- √ 4. Magnet Center-to-Center
- 5. Magnet-Pore Spacing √ 6. Wall Height
- 7. Inlet Diameter

11

23

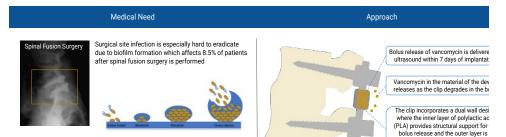
Polarized Light Apparatus for Analyzing Collagen Structure Within Ligaments Under Load

Tran Ly, Alan Nguyen, Renoj Roy, and Dr. Joseph Sarver Malik Tlili

24

3D Printed Bioresorbable Antibiotic Clip for Prevention of Spinal Surgical Site Infection

Rochitha Nathan, Manisha Rajaghatta, Brinda Shah, and Alyssa Suarez


Design Need: Combine instantaneous and bolus release of antibiotics to treat

SSI and reduce rehabilitation time, cost, pain for patients

Dr. Steven Kurtz

composite poly-lactic-co-glycolic ac

(PLGA 85:15) and vancomycin mater

Results Solution Bacteria Biofilm Formation · PLGA/vancomycin composite material Fits 5.5mm spinal proved to be biofilm resistant and chemically stable after thermal-processing Membrane rod · Device was able to fit and stay onto a spinal 12mm clip width fusion rod that endured physical force. 4mm channel . Device was able to hold a capacity for the 6 x 6mm window diameter bolus release dosage. 1mm outer wall . Mass loss was achieved in the degradation thickness test, however the required mass loss 9mm clip height percentage was not achieved. PLA · Outer layer of the device was able to release PI GA + antibiotic, however the goal of beyond 7 Vancomycin well Vancomycin days was not met.

Assistance Call Device for Advanced ALS Patients

Chadwich Dotson-Jones, John Furey, and Dr. Joseph Sarver **Andres Gutierrez**

Medical Need:

ALS is a progressive neurodegenerative disease resulting in loss of functional movement and/or speech requiring constant caregiver supervision

Design Need:

Adaptable device which will allow patients with advanced stage ALS to call a caregiver, with minimal force and movement

Hand contractures seen in ALS patients

Solution:

- Repositionable
- Adjustable force threshold
- Rechargeable
- Wireless signal transmission
- Auditory, visual, and haptic feedback

FSR trigger modeled on hand

Approach:

- Movement of limb
- Minimal Adjustability
- Not fixed on rigid surface

Device Objective Lateral pinch activation o Adjustable to disease progression u Fixed on rigid surface Preserved Movement in ALS o Lateral pinch

Results:

Requirement	Verification Test	Pass/Fail	Average		Pinch Fo	rce	
Adjustable Sensor Placement	Finger Morphology		50	RIGHT .	LEFT		
0.2 N Activation Force	Activation Force		40	60.77	81 (70		
20 Meter Alarm Range	Transceiver Alarm Range		S 20 -				
Rechargeable Battery/Alarm	Low Battery Alarm		0 20				
Feedback Call Indicator	LED Feedback Indicator		10 Activation				
Internal Device Supervision	Internal Supervision Alarm	9	Perce o -	TOTAL			
mana a ab.		Patient Hand					

Impact:

- Quality of life and safety of patient
- Ease caregiver burden

NOTES

NOTES

3141 Chestnut Street Philadelphia, PA 19104

215.895.2215 | drexel.edu/biomed

facebook.com/drexelbiomed | twitter.com/drexelbiomed

youtube.com/drexelbiomed | instagram.com/drexelbiomed