Affinity-Based Computational Model for Hydrogel Drug Delivery Team 2: Samuel Huang, Joshua McGuckin, Amy Tieu, Julianne Wagner

Christopher Rodell, Ph.D., Associate Professor

Need: Rapid release of drugs leads to **toxicity** Use Cyclodextrin (CD) to ↓ toxicity

Researchers are unable to predict release

Biomedical Engineering, Science and Health Systems

Constraints:

from CD affinity-based hydrogels

Objective: Develop a model to accurately **predict drug** release from a CD hydrogel

Existing literature for model verification

Computational power of a laptop (8 GB RAM)

Requirements for Predicted Release:

- Must **match** data in literature ($R^2 \ge 0.85$)

Must be dependent on affinity and [CD]:[drug]

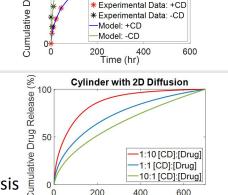
X-direction (mm) **Results:**

Z-direction (mm)

Matches experimental data

Hydrogel with 2D Diffusion at t = 0.1 hrs

Dependent on affinity


Expansion into 3D

diffusion mechanisms

Verification with new

- Dependent on [CD]:[drug]
- GUI enables sensitivity analysis

studies

Cylinder with 2D Diffusion: Adamantane

Solution: HydroSim - a user friendly model for hydrogels

Y-direction (mm)

- Impact:
 - Save time and ↓ drug

Time (hr)

200

delivery research costs Hydrogel educational

tool for students

Solution – Design:

Release Fick's 2nd Law Michaelis Menten Cumulative Drug F (%) 0 of Diffusion **Enzyme Kinetics MATLAB ODE Solver**

Revisions: Time