Team 3 – Source Tracking of COVID-19 Infection by Rapid Sequencing

Need:
- 160M COVID-19 cases worldwide
- Highly contagious variants of COVID-19
- Aid contact-tracing efforts
- Support Drexel COVID Task Force to monitor the spread on campus

Objective: Design a process to **visualize the relationship between COVID-19 sequences** to distinguish between community spread and novel traveler spread and identify varying strains of the virus to help guide contact tracing

Solution Design
1. Receive prepped sample (from Drexel COVID-19 Taskforce)
2. Perform real-time genome sequencing
3. Create network diagram of same-state and same-variant clusters (Our solution: COVID-trace)

Design Inputs
1. Software must be able to achieve **accuracy ≥ 90%**
 - Sample variant must be accurately identified
 - Sample US state must be accurately identified
2. Time to complete full analysis must be **less than 7 days**
 - Sequencing must be completed in less than 24 hours
 - Network Diagram/Covariant analysis must be completed in less than 24 hours

Solution Build
- Disease transmission clusters identified by region and variant
- Pennsylvania
- Texas
- New York

Testing Results
- Our sequencing was **99.98%** accurate compared to the gold standard
- Correctly identified a sample’s variant with **100%** accuracy
- Time per full analysis: **< 25 hours**

Future
- First time sequencing has been done on a COVID sample within Drexel
- Help understand transmissibility and infectivity of COVID-19
- Can be adapted and applied to future pandemics

Team Members
- Arun Balaji
- Abbey Crider
- Matthew Falcione
- Sofia Tanvir

Advisor
- Dr. Will Dampier