Portable Brain Computer Interface for ALS Patients – SDT 08 – Victor Flamini, Cody Stephens, Angelo Guiliano, Hoang Nguyen Advisors: Dr. Hasan Ayaz & Dr. Terry Heiman-Patterson, Instructor: Dr. Jaimie Dougherty **Problem Solution: Modified AR Glasses With BCI**

OUTLET ON

- ALS degenerates motor neurons causing loss of autonomy, heavy dependence on caregivers
- Brain-computer interfaces (BCI) use neural activity to execute actions
- Current BCIs are intrusive and expensive

Objective: Improve user experience in an affordable BCI system.

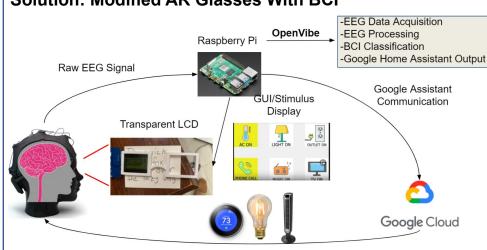
Too Expensive

AC ON

Requirements: Visible display & maintain FOV,

stimulus displays in time, maintain system functionality

Testing Results


process output

LCD refresh rate: ~34 FPS System RAM Usage: 19.6%

Processing time.				
~501 ms from	signal	input	to	

Eye	Vision Span (°)	% of Total Vision
Left Eye	79	83.1
Right Eye	68	71.6

User Field of View

Cost: \$1,200

Added System Components:

Raspberry Pi 4B, Transparent TFT LCD, 3D Printed Frames

Weight: Under 1 pound for total system

Future Plans

- Hands-free on/off switch
- Higher screen resolution
- Further increase field of view with screen

Impact

Environmental Interaction

- Reduce system cost by 50% Overall size minimized:
- environmental interaction increased
- Restoration of autonomy