3D-Printed Palatal Obturators for Pediatric, Bilateral Cleft Patients

Team #11: Anastasia Zafiris, Geetha Kannan, James Huynh, Paul Thomas, Rudrah Shah (Drexel University)
Advisor: Adrian Shieh, PhD (Drexel University); **External Advisor:** Quinn McCarthy (Depuy Synthes)

Medical Need

- **Cleft Palate:** Most common congenital craniofacial abnormality that occurs in 1 in every 700 live births
 - **Alveolar arch collapse** can occur due to inadequate intraoral support
 - Without treatment, midface deficiency, collapsed dental arches, and the malformation of teeth can occur
 - 44% of patients turned away from treatment in developing countries
 - Existing solutions include a lengthy fabrication process involving impression/casting/molding, which is expensive and time consuming

Project Goal

Create a palatal obturator design with a 3D-printable material that will prevent alveolar arch collapse for preoperative bilateral cleft patients in ages ranging from 7-11

Finite Element Analysis

- 3D prototype imported into ANSYS software to analyze stress and deformation heatmaps

Solution

- **3D Oral Model from Medical Scan**
- **3D Personalized Obturator Prototype**
- **3D Prototype on Patient Palate**

### Requirement	Orientation	Acceptance Criteria
Withstand 1.2 N load cheek force | Side to side (medial to lateral forces) | < 8×10^{-3} mm displacement bottom face
Withstand 0.68 N load tongue force | Dynamic vertical loading during chewing and swallowing | < 6.5×10^{-3} mm displacement sides

Testing Results

- Tongue force verification testing negligible - simple compression test
- 6-run cheek force verification testing - **PASS**

Impact & Future Plans

- This non-invasive solution utilizes 3D-printing and engineering simulation software to fabricate palatal obturator designs leading to more efficient processes
- Fast turnaround to treat patients in developing countries
- Automation of prototype production for future innovations

Special Acknowledgments

Special thanks to our Drexel advisors, Adrian Shieh and Jaimie Dougherty, as well as our external advisor at Depuy Synthes, Quinn McCarthy

Bilateral cleft palate
Palatal obturator

3D Oral Model
3D Personalized Obturator Prototype
3D Prototype on Patient Palate

Tongue force deformation heatmap
Cheek force deformation heatmap

Obturator Material - Stratasys Veroblue RGD840

Uniform 4.0 mm thickness
Single component