Team 13: Device to Induce In vivo Brachial Plexus (BP) Injury in Neonatal Piglet

Members: May Allall, Aditya Master, Parth Hardikar Advisors: Dr. Sriram Balasubramanian (Drexel), Dr. Anita Singh (Widener) Instructor: Dr. Joseph Sarver (Drexel)

Medical Need

- Neonatal Brachial Plexus Palsy (NBPP) affects 1 to 4 per 1000 births
- Leads to overstretching and/or avulsion of the BP nerves
- Biomechanical injury mechanism is poorly understood

Project Goal Develop a biomechanical device to cause in vivo external neck stretch that will lead to BP injury in neonatal piglets

Results - Verification Testing

Test	Average % Error
Known Weight vs. Measured Weight	5.20
Input Displacement vs. Measured Displacement	0.342
Input Displacement Rate vs. Measured Displacement Rate	1.72

Future Plan

- Develop fastening system
- Solder the wires on the circuit board

Impact

 With the development of this device, clinicians will understand more about the mechanisms and biomechanical properties of BP injury

Approach

- Measure Traction Force (load cell)
- Control magnitude and rate of linear distraction (actuator)
- Control lateral bending angle of the neck (swivel joint)

Note: Our device will replicate force and lateral bending on a piglet model