Team 17 - Revise Shoulder-Torque-Range-of-Motion (STROM) Device

Members: Nam Nguyen, Hang Truong, Zhuoyi Chen and Andrea Rockefeller

Need

Solution Design

15/64" (6 mm)

7 1/3

Aims to quantify rotational

Users: Physicians who need

Improve mechanical stability **Improve** calibration of angle

to assess shoulder stiffness

in baseball players

stiffness

Advisor: Joseph J. Sarver, PhD

Design Inputs

- Measure angular displacement and torque accurately, compute stiffness (95% accuracy)
- Device is stable and not moving around while using
- Height needs to be adjustable

Results & Impact

measurement

calculation

Improve software

- Device can be set up in 10 min
- Angular displacement and torque measurements are within 95% accuracy

Impact

Angular displacement

Goniometer Angle	Theoretical Value	Old IMU	NEW IMU
Handle down 0°/360°	0°	10.2°	0.2°
Rightside 90°/270°	90°	24.9°	88.5°
Handle upright 0°/180°	0° or 180°	170.4°	0.4°
Leftside -90°	90°	92.7°	86.2°

Torque

· · · · · · · · · · · · · · · · · · ·		
Theoretical Value (Nm)	Tested Value (Nm)	% Error
11.6	11.83	1.98
16.6	16.66	0.39
33	33.18	0.55

STROM can be used by physicians to perform more accurate diagnoses, and for athletes to have better tracking of improvement during injuries.