Centrifugal Impeller for Pediatric Total Artificial Heart

Team 3: Gizelle Adriguez¹, Vincent Caruso¹, Melissa Lyon¹, Isabella Miller¹, Katelyn Moore¹, Amy Throckmorton, PhD¹, Matthew Hirschhorn¹ ¹ School of Biomedical Engineering, Science & Health Systems, Drexel University

Need:

Cardiac defects are the #1 cause of birth related deaths with no long term treatment strategy.

Objective:

Improve the geometry of a more compact pediatric centrifugal impeller while maintaining pressure rise and flow capacity.

Solution:

Impeller models were created using the Taguchi Design Optimization Method to evaluate the following geometric characteristics.

Results:

When tested from 1750 to 2250 RPM, all final models produced a pressure differential >70 mmHg and flow rate >1 L/min. As predicted by the Taguchi Method calculations, Model 1 is the top performer and satisfies all requirements.

Simulation Results				
Requirement		Design 1	Design 2	Design 3
Pressure Generation	> 70 mmHg	123 mmHg	109 mmHg	105 mmHg
Fluid Stress	< 200 Pa	137 Pa	149 Pa	95 Pa

Conclusion:

Improved impeller geometry will allow for model to be scaled down and used intracorporeally.

Impact:

Future iterations of Dragon Heart will help to alleviate high demand for pediatric heart transplants.