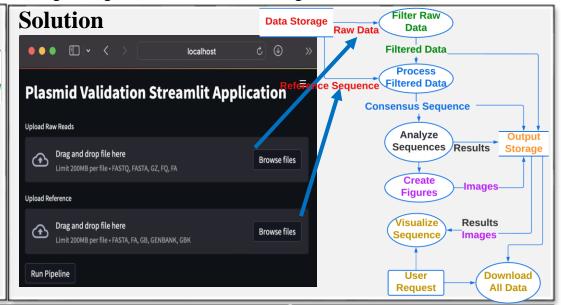
Computational Pipeline for Full Plasmid Validation

Team 13: Daniel Thompson¹, Dhwanil Patel¹, Jackie Tang¹, Dr. William Dampier² Drexel University, School of Biomedical Engineering and Health Sciences¹, College of Medicine²

Need

No existing software that assembles raw reads and visualize the plasmid and its mutations Sequence?


Objective

Develop an app that **analyzes plasmid sequences** and **visualizes mutations**

Requirements

• Accurate detection of features and mutations with a resolution of 1 base pair

• Visualization of results

Results	Original	Changed	Mutation	Element	Visual	
Highly accurate and fully functional web	Seq.	Seq.	Shown	Plasmid	Yes	
	CGGCAA	GGTTCA		Map		tl F
application	TOCOLATT	CCCACAACT		Features List	Yes	Ш.
	TGCCCATT CGAC	CCGAGAACT TAA	10 mutations	INDEL	Yes	a b

Future

Impact – Simplify plasmid validation by encapsulating all the steps into one application **Revisions** – Include de novo assembly and a suite of synthetic biology computational tools