
Piezoelectric Finger (PEF) as a Tablet Coating Thickness Assessor

Group #14: Zarraf Ali, Karan Athri, John Bonasera & Adarsh Sureshbabu Advisors: Dr. Wan Shih & Dr. Wei-Heng Shih

Need

FDA requires online tablet coating thickness verification during manufacturing

Objective

To measure tablet coating thickness using PEF with a thin probe

Current options: <u>slow</u> or destructive

Prototype Device Testing

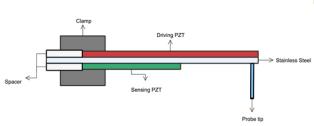
PEF 3: 0.4mm probe diameter

PEF measurements follow trend of test samples between 0.3 and 0.8 mm

Caliper	PEF
0.23	0.28
0.31	0.28
0.38	0.47
0.6	0.55
0.8	0.71

Values in mm

Solution


<u>Piezoelectric finger (PEF):</u>

In-situ Elastic Modulus sensor

Quantify coating thickness through Elastic Modulus

Requirements:

- PEF should measure thickness between 0.2 and 0.4 mm with 20% error allowance

 $E = \frac{1}{2} \left(\frac{\pi}{A}\right)^{1/2} (1 - v^2) \frac{K(V_{in,0} - V_{in})}{V_{in}}$

Conclusion

PEF prototype is accurate in modeling coating thickness between 0.3 and 0.8 mm

Impact:

Low cost, accurate, on-line tool for tablet coating quality control in pharmaceutical manufacturing