Brain Computer Interface (BCI) Based Smart Alarm and Sleep Classification

Team 17: Eric Kirchgessner, Ryan Byrne, Christian Noggle, Adriana Rivera, Hasan Ayaz, PhD School of Biomedical Engineering, Science and Health Systems

Need

-About **70 Million** Americans suffer from chronic sleep problems¹ -Sleep is a dynamic **neurophysiological process** characterized by **sleep stages** (**REM, N1, N2, N3**)² and wrist-based assessment \rightarrow inconsistent accuracy - Waking in light sleep results in: \uparrow wakeup feeling³ and \uparrow cognitive function⁴

50 µv Wake M

Project Objective:

Develop a near-real time BCI system that can determine sleep architecture (sleep stages throughout the night) and identify least disruptive wakeup time

Testing

Requirement 1: 78.1 ± 0.2 % overall agreement > 75% compared to expert analysis⁵

Requirement 2: Alarm activation must (and does) occur within user-defined wakeup time window and during stages N1 or N2. Processing Time: 0.46 ± 0.03 seconds / epoch.

Impact and Next Steps

- Avoiding disruption of REM and deep (N3) sleep: learning, memory, mood, sleep inertia

- Accurate at-home sleep assessment with meaningful feedback:

public health workplace productivity, further sleep/health monitoring innovations

