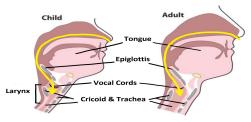
Pediatric Nasotracheal Intubation Assistive Device

Team 19: Casey Fuoco¹, Sophia Macchia¹, Hannah Mikkelsen¹, Dominic Razo-Castañeda¹, Sarthak Sharma¹,

Marek Swoboda, PhD¹, Aysha Hasan, MD²

¹ School of Biomedical Engineering, Science and Health Systems ² St. Christopher's Hospital for Children

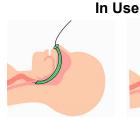


Need

57% of complications in **pediatric** intubation involve **pre-existing** airway or craniofacial abnormalities^[1]

Nasotracheal Path:

Sharper angle of pathway in child makes pediatric nasal intubation extremely difficult

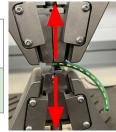


Objective: Create an **easily removable** assistive device for **pediatric nasal** fiberoptic intubation especially in challenging, difficult airways.

Solution

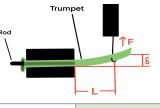
5 mm 5 mm

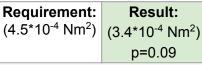
Design



Solution Statement: Develop a removable assist device to guide the fiberscope by adding pre-manufactured perforations along the length of a pre-existing nasal trumpet

Testing Results


Tensile tearing test (R4): Find the max force required to tear along perforations



Bending stiffness test (R5):

Cantilever bending test for non-perforated and perforated trumpet

Simulated-Use Testing: Device was successful in a simulated procedure using mannequins at St. Christopher's Children's Hospital.

Conclusion and Societal Impact

Impact: Benefits physicians, anesthesiologists, and patients by improving nasal intubation via fiberoptic guidance in emergencies Future Plans: Manufacture device using injection molded Medical Grade Neoprene and scale for other sizes.

[1] Bai W, et al.; "Evaluation of emergency pediatric tracheal intubation by pediatric anesthesiologists on inpatient units and the Emergency Department," (2016)