Need

57% of complications in pediatric intubation involve **pre-existing airway or craniofacial abnormalities** \(^1\)

Nasotracheal Path:

Sharper angle of pathway in child makes pediatric nasal intubation extremely difficult

Objective: Create an **easily removable** assistive device for pediatric nasal fiberoptic intubation especially in challenging, difficult airways.

Solution

Design

<table>
<thead>
<tr>
<th>5 mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>5 mm</td>
</tr>
</tbody>
</table>

Solution Statement: Develop a removable assist device to guide the fiberscope by adding pre-manufactured perforations along the length of a pre-existing nasal trumpet

Testing Results

Tensile tearing test (R4): Find the max force required to tear along perforations

- **Requirement:** \(<14.3 \text{ N}\)
- **Result:** \(=13.5\text{ N}\)

Bending stiffness test (R5): Cantilever bending test for non-perforated and perforated trumpet

- **Requirement:** \((4.5\times10^{-4} \text{ Nm}^2)\)
- **Result:** \((3.4\times10^{-4} \text{ Nm}^2)\)
- **p=0.09**

Conclusion and Societal Impact

Impact: Benefits physicians, anesthesiologists, and patients by improving nasal intubation via fiberoptic guidance in emergencies

Future Plans: Manufacture device using injection molded Medical Grade Neoprene and scale for other sizes.

\(^1\) Bai W, et al.; “Evaluation of emergency pediatric tracheal intubation by pediatric anesthesiologists on inpatient units and the Emergency Department.” (2016)