Low Intensity Ultrasound Neurostimulation Therapeutic Device

Advisors: Dr. Peter A. Lewin & Dr. Mark E. Schafer

Background
- The prefrontal cortex of PTSD patients is understood to be the most accessible and susceptible brain region for neurostimulation
 - Existing neurostimulation devices (TMS) are limited in both time and cost for patients
- Ultrasound can produce neuromodulatory effects within specific brain regions at certain frequencies
- Need better understanding of how ultrasound neurostimulation treatments affect brain performance

Objective: Develop a transducer device that is capable of neurostimulation using ultrasound within the 400-700 kHz frequency range

Solution
- Frequency Range: 400 - 700 kHz
- Resonance Frequency (kHz) (Hydrophone Verification Test)

<table>
<thead>
<tr>
<th>Disk ID #</th>
<th>Trial 1</th>
<th>Trial 2</th>
<th>Trial 3</th>
<th>Mean</th>
<th>SD (±)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1456</td>
<td>424</td>
<td>417</td>
<td>420</td>
<td>420.3</td>
<td>2.87</td>
</tr>
<tr>
<td>1911</td>
<td>579</td>
<td>580</td>
<td>578</td>
<td>579</td>
<td>0.82</td>
</tr>
</tbody>
</table>

- Piezoceramic Disk
- 3D Printed Transducer Housing
- Epoxy Matching Layer
- Silicone Lens (in Mold)

Impact
- Novel neurostimulation device with compact and cost effective design allows for greater accessibility for PTSD patients and hospitals

Future Work
- Testing further PZT frequencies
- Clinical trials of ultrasound device
- Addition of fNIRs feedback system to improve stimulation