Novel Ophthalmic Minimal Dead Volume Drug Delivery System

Saving Money By Reducing Drug Waste Members: Kyle Pfeffer, Rachel Grant, Victoria Triana Advisors: Mark Hedgeland and Tom Meyer

Biomedical **Engineering**, Science and Health Systems

Problem:

- Age related macular degeneration (AMD) is currently treated by injecting anti-VEGF or gene therapy (in clinical trials)
- Current injection techniques create cost burden due to dead volume and create variable flow rates \rightarrow retinal tears, hemorrhaging, and cataracts (left to right)

Healthy

Need: *Develop a single-handed, in-office,* drug delivery system with minimal dead volume and controlled flow rate

Solution:

Pressurized custom 3D printed chamber with compressed air actuates piston to initiate flow when start/stop mechanism is engaged

Components:

1. Pressure Chamber 2. Piston Chamber 3. Start/Stop Mechanism

4. Syringe 5. Dose Cradle

Design Inputs:

Verification Testing:

A dose [100 uL] drawn up, administered into weighing boat, then weighed. Average flow rate (uL/s) and dose accuracy (%) based on 100 uL was recorded.

Requirement	P-Value		Decc/Eeil2
	Lower	Upper	Pass/Fail?
R2. Flow Rate	0.006	< 0.0001	PASS
R3. Dose Accuracy	<0.0001	< 0.0001	PASS

Future:

Revisions:

- 1. Make design shorter
- 2. Injection mold parts

Impact:

- Saves user over **\$20,000 per injection**
- Total cost to build current device = **\$33.65**! 2.
- Allows for a **controlled flow rate**