Team 06

NextGen Neonatal Shunt Deployment for Congenital Heart Disease

Amanda Collins¹, Amelito Dalusong¹, Tahlia Detweiler¹ & Shreya Srinivasan¹ Amy Throckmorton, PhD¹, Randy Stevens, MD²

¹School of Biomedical Engineering, Science, and Health Systems, ² St. Christopher's Hospital for Children

Need

Hypoplastic Left Heart Syndrome (HLHS) is responsible for up to 40% of neonate cardiac mortality due to the severely underdeveloped left ventricle [1]

The Norwood Procedure [1]:

Establishes the right ventricle as the main blood pump of the body. Requires the excision of cardiac muscle to insert the shunt.

Objective:

Design a **single insertion** shunt deployment device that **stretches** the cardiac tissue to **maintain intended blood flow** in HLHS neonates.

Solution

Verification Testing Results

V3: Leak Test

R3: Non-leak Features	Results	
No Leakage	PASS	

V4: Compression Test

R4: Deformation Resistant	Elastic Moduli	Results
≥ 15 kPa	644.6 kPa	PASS

The device successfully deploys into a pig heart, while also meeting the outlined dimensional constraints, and maintains a flow rate of 0.5 L/min.

Conclusion & Impacts

Impact:

Retention of cardiac tissue leading to increased mechanical stability of the heart

Future Revisions:

- 1. Utilize biocompatible materials
- . Additional functionality of tip

[1] Feinstein, J. A., et al. (2012). Hypoplastic left heart syndrome. Journal of the American College of Cardiology, 59(1), S1-S42. https://doi.org/10.1016/j.jacc.2011.09.022