Research Device to Measure Suture Force During Syndesmotic Repair

Milan Ghodasara¹, Matthew Czaja¹, Dimitri Dogias¹, Ankit Patel¹

nchor

Dr. Sorin Siegler, PhD², Dr. Thomas Sherman, MD³

Need

5.300 syndesmotic repair procedures done nationally in 2020^[1]

TightRope tension during use is not understood

09

Syndesmotic over compression is present in 52% of TightRope procedures^[2]

Objective: Develop a research device for in situ TightRope tension measurement

Design Inputs

Requirement 1 (R1): Must measure compressive force between 80N and 140N

Requirement 2 (R2): Must measure tension in ankle ROM, 65° to 75° in the sagittal plane

Button

Figure 1: TightRope

Implanted

Constraints: TightRope Integration, No Anatomical Obstruction

Solution

Solution Statement: 3D printed device mounted to medial tibia, houses load cell & provides anchor point for Tightrope

Figure 2: Assembly Components

<i>Compression (R1):</i> Read force during implant tightening		Range of Motion (R2): Compare force in ROM between ankle model and ADAMS model	
Pass:	Result:	Pass:	Result:
>210N	210N	p > 0.05	p = 0.81*
Device Device S S Controller		Figure 5: Ankle/ADAMS Model for VT2	
		- Accuracy of sensor	
Figure 4: Test Setup for VT1		- Quality of physical model	
Innovation		Societal Impact	
Quantification of forces within the TightRope both before and after implantation		Force measurements benefit researchers to develop further fixation devices	
Future Plans: Mount solution on cadaver leg for studies			

Testing Results

References

[1] Syndesmosis repair featuring the syndesmosis tightrope® XP implant system. Arthrex. (n.d.). Retrieved March 12, 2023, from ttps://www.arthrex.com/ja/resources/video/Oxd5AmA1dEa97wFgvDENPw/syndesmosis-repair-featuring-the-syndesmosis-tightrope-xp-implant-system [2] Haynes J, Cherney S, Spraggs-Hughes A, McAndrew CM, Ricci WM, Gardner MJ. Increased Reduction Clamp Force Associated With Syndesmotic Overcompression, Foot & Ankle International, 2016;37(7):722-729, doi:10.1177/1071100716634791