School of Biomedical Engineering, Science and Health Systems

14 Portable Hypercapnia System for Assessment of Cerebrovascular Reactivity (CVR) Branden Perry, Adarsh Abbagani, Nicholas Ehring, Mahaiy Muhammad, Zhangerjiao (Jeff) Yuan

Arduino Uno

Linear Actuator

Room Air Opening

L298N Motor

Driver

Co2 Sensor

Piston

Problem Solution Neurological disorders cause cerebral microvascular dysfunction CVR: Blood vessel dilation in Tubina response to hypercapnia Blood Rebreathing CO₂ Bag •Existina Douglas Bag +T+ - Time consuming and bulky Shell • The solution removes the need for the douglas bag by using rebreathing mechanism Need • User has the imaging technology to measure blood vessel dilation • Needs device to induce hypercaphic stimulus Blood vessel imaging •Objective Develop portable device to induce hypercapnia and return to Stage 2 - Hypercapnia Induction Stage 4 - Normocapnia Return

Baseline 55 2 Induce Hypercaphia 50 3 Hypercaphia 4 Return to Basline EtCO2 (mmHG) 45 1 40 35 30 50 100 150 0 Time (sec)

Verification

- Tests the air leakage in the system.
- Apply soap solution to shell
- Duct tape all openings
- and put a balloon on one end
- Blower will introduce airflow Look for bubbles forming on the shell

- Increa
- 10 mm
- o Acl
- Retur
- o Acl

m⊢ chie ırn	to baseline w	ine utes = <mark>Success</mark>	$ \begin{array}{c} 8 \\ 36 \\ 34 \\ 32 \\ 0 \\ 20 \\ $	100 120 ne (sec)	
	Verification Test	Criteria	Observed Result	Pass/Fail	
	Air leakage Test	No Bubbles	No Bubbles*		
	Induce Hypercapnia	Baseline + 10 mmHg	35.78 → 48.12 mmHg		
	Return to Baseline	Baseline ± 2 mmHg	36.11 mmHg		
_					

Future

Revision

200

- Impact

normocapnia

Design Inputs

C1	Must not exceed 7% Co2 increase for 6 minutes				
C2	No interference with normal breathing rhythm				
C3	>22 mm tube diameter to prevent condensation buildup				
R1	Increase EtCO2 10 mmHg from baseline				
R2	Return EtCo2 within ±2 mmHg of baseline				
R3	No air leakage up to 6.8 kPa				

Air Leakage test

- No bubbles = Success

Induce Hypercapnia & Return Normocapnia

Implementation of Software to enable Hypercapnia maintenance

Make the use of CVR as a test metric more convenient User can assess Neurovascular Dysfunction