Composite Hydrogel Platform for High Local Cell Density Cell Culture and Mechanical Testing

Hannah Ma, Brian Osafo-Mensah, Shreyaa Raja, Sunny Thorley

Advisors: Dr. Lin Han¹, Thomas Li²

¹ Drexel University, School of Biomedical Engineering, Science & Health Systems

Clinical Need and Design Inputs

Osteoarthritis (OA) affects ~32.5 million people in the US annually

- **Specific Need**
 - Study cartilage cells and extracellular matrix (ECM) to treat OA
 - Mimic compression on cartilage; study cellular response

- **Challenges**
 - Requires high cell numbers to maintain viability
 - Ensuring load transmission onto cells

Objective and Solution

Objective

Synthesize a hydrogel that allows compression of a small cell number to study the effect of mechanical loading on cartilage ECM

Key Requirements

- **R1** Gel containing cells (alginate bead) must remain solid in polymerized state
- **R2** Composite gel must remain stable >20% strain
- **R3** Compressive load applied to entire gel must result in >10% deformation of bead
- **R4** >80% viability after 1 week in culture

Testing and Results

V1 Alginate Polymerization

- **At synthesis** 72 hours
- **Results:** Pass
 - Alginate stays polymerized
 - P value = 0.347
 - No significant change in diameter

V3 Load Sharing

- **Results:** Pass
 - Change in diameter: 14.07% ± 4.6%
 - n=3

V2 Mechanical Stability

- **Results:** Pass
 - Composite does not break under 20% strain

- **Compression testing on 3% Composite**
 - Measurement: 2.671

V4 Cell Viability

- **Cell viability at Day 6**
 - **Results:** Inconclusive
 - Proof of some viable cells
 - No accurate method to count cells yet

- **Green = live cells**
- **Red = dead cells**

Revisions and Future Work

- **Revisions**
 - Agarose formulation modified to 3% from 2%
 - CaCl₂ supplemented to culture media

- **Future Work**
 - Measure cell viability and gene expression with mechanical loading in bioreactor

Impact

- Further understanding of OA upon observing cell mechanosensing in vitro
- Solution may be implemented for other cell types (ex. cancer cells)

References

1. The University of North Carolina at Chapel Hill. (2022, October 12). Oa Prevalence and Burden. Osteoarthritis Action Alliance. Retrieved October 28, 2022, from https://oaaction.unc.edu/oa-module/oa-prevalence-and-burden/#:~:text=CDC%20estimates%20that%201%20in,million%20by%20the%20year%202040.&text=While%20there%20are%20estimated%20to,affecting%2032.5%20million%20US%20adults

