Team 02

Artificial Corneal Implant for High-Risk Patients With Corneal Blindness Majo Garcia, Daniel Habboush, Natalie Lau, and Victoria Le

Catherine Von Reyn, PhD, Christopher Rodell, PhD ¹Drexel University School of Biomedical Engineering, Science, and Health Systems

Biomedical Engineering, Science and Health Systems

Need

User and Problem

- Corneal blindness is a major cause of ocular morbidity
- Corneal transplantation is the most common treatment
- High risk patients have a low likelihood of corneal transplant success
- Keratoprosthesis (KPro) is a viable alternative

Limitations of KPros

- Invasive
- Expensive and complex
- Bad cosmetics
- · Limited diffusion of nutrients

Current Solutions

- 1. Boston KPro
- 2. Modified Osteo Odonto KPro
- 3. AlphaCor

Objective

Design a proof of concept, hydrogel-based keratoprosthesis device for high-risk patients permeability while maintaining a natural aesthetic.

Solution

75% pHEMA/ 5% sPEG Kpro:

- Use for high-risk patients ineligible for corneal transplants
- Prevent implant rejection

CH.

• Minimially invasive surgical procedure

Requirement: ≥ 92%

Transparency Test Hydrogel Light

Transmittance Result: 99.1% Transmittance **✓**

Testing Results

Contact Angle Test

Requirement: ≤ 35° Result: 25.9°

Young's Modulus Test

Requirement: ≥ 0.29±0.06 kPa Result: 4653.8 kPa

luorophores

Diffusivity Test

Requirement: ≥ pHEMA

activity

conditioned cells' metabolic

Result: The 5% sPEG hydrogel

had significantly less metabolic activity than the

pHEMA conditioned cells

Requirement: $\geq 3.1 \pm 1*10^{-8}$ cm²/s

Result:

ineligible for corneal transplants that improves on existing solutions by increasing implant

Conclusion and Societal Impact

Cell Viability Test

Summary

This solution is the foundation to create an innovative KPro that would have fewer complications.

Future Work

- Changing crosslinker to reduce rigidity
- Changing pHEMA/sPEG concentration
- Hydrogel shaping into a dome
- Use epithelial cells for cell viability

Impact

Accessibility Natural looking Biocompatibility Less complex

References and Acknowledgments

- [1] Moshirfar M et al. Survey of ophthalmology. 2022; 67(4), 1175-1199.
- [2] Tidke SC et al. Cureus, 2022; 14(10), e30097
- [3] Corneal Transplant Rejection College of Optometrists, 2022
- [5] Tan A. et al. Ocular Surface. 2012; 10:15-25
- [6] Myung D. et al. Biotech. Progress. 2008;24(3):735-741
- [7] Jirásková et al. AlphaCor. 2011. 25(9), 1138-1146

We would like to thank our Advisory Team: Dr. Catherine von Reyn, (Co-Primary Advisor); Dr. Christopher Rodell, (Co-Primary Advisor); Dr. Jaimie Dougherty, (Design Instructor); Dr. Zeba Syed, (User/Mentor); Jay Bhatt, (Mentor/Consultant); Akari Seiner (Mentor); Arielle D'Elia (Mentor); Kenneth Kim (Mentor); and Bryce Hina (Mentor).

Both Materials: · Stable in physiological conditions

fluids

- Hydrophilic and thus compatible with biological
- Exhibit minimal protein adsorption

