

BiSTro: Biaxial Strain Tester for Porcine Aortic Tissue

Both

load cells

measure

0.1-2.5 N

forces at

Cameron Eaton, Landon Leininger, Isabella Spinelli, and Demetri Tsitsios Advisor: Dr. John Eberth

Problem

Solution

Verification

■ Actual Value ■ Trial 1 ■ Trial 2

Force Reading

등 0.2 당 0.15

150-200k people die from aortic aneurysms each year

From damage to aortic tissue

Dr. Eberth wants to study mechanics of porcine aortic tissue using planar biaxial testing

Problem: Biaxial testers are expensive and not customizable

Objective: Create an affordable and customizable planar biaxial loading device to study porcine aortic tissue

Key Design Requirements Read small forces (0.1-2.5 N)

Stretch tissue sample (≤ **8.5 mm**)

Quasi-static stretching ($\leq 850 \, \mu m/s$)

Load Cells -Design: read forces for data analysis **Motors -** stretch sample at quasi-static rate

Build:

Rakes - attach to sample to stretch it

a 0.1 N scale AII motors move at

< 850

µm/s

Future

Develop image correlation capability Implement additional testing protocols

BiSTro will allow Dr. Eberth to study aortic mechanics at a low cost (~\$3,000), informing research in aortic aneurysm prevention