Piezoelectric Cantilever Probe to Measure Coating Thickness in Drug Tablets

Sam Schonwald, Daniel Nikitin, Ryan Conley, Jamie Zakharia

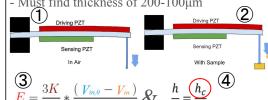
Advisors: Dr. Wan Shih¹, Dr. Wei-Heng Shih² Secondary Advisors: Shu Huang², Pawan Rao²

1: Affiliate of Drexel University, School of Biomedical Engineering, Science, and Health Systems 2: Affiliate of Drexel University, College of Engineering

User Need & Objective

No way to accurately measure tablet coating thicknesses

Coating vital to product effectiveness, palatability, and cosmetics

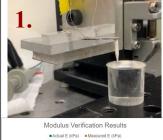

Coating defects account for 0.27% or roughly 36 million tablets a year

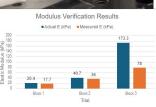
Objective: Use PEF to measure tablet coatings with new probe

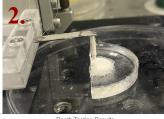
Solution: Design

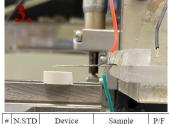
Piezoelectric Finger (PEF):

- Finds coating depth through elastic modulus
- Must find thickness of 200-100μm








Verification Testing

#	N.STD	Device Damage	Sample Damage	P/F
1	0.076	0	0	
2	0.014	0	0	
3	0.061	0	0	
4	0.043	0	0	~

Results:

Solution can accurately and precisely deduce coating thickness, but only on materials with stiffnesses < 40 kPa

Solution: Build

Conclusion & Future

Revisions:

- Create less labor intensive building process
- Change PEF geometry to increase device sensitivity

Impact:

- Tablets can accurately & reliably be assessed
- Strengthen the drug manufacturing process
- Reduce production costs & improve patient safety