
Team 17

Improving CRISPR Off-Target Detection Using Transposases

Biomedical Engineering, Science and Health Systems

Members: Ann Abraham, Connor Gazda, Alexis Malamas, Olivia Wood **Advisor:** William Dampier

FUTURE: Summary:

Combine 2 steps into 1, enhancing efficiency

Impact:

Simpler and quicker GUIDE-seq protocol.

Future Revisions:

Use an enzyme that can cut more TN5 reaction and directly test the sequencing (using comparable samples)

Random Fragments

with Adapters

DESIGN INPUTS:

PCR Direction

Compatible adapters: i5 and i7 ends needed for sequencing

Unique Molecular Index: needed to identify PCR duplicates

Requirements:

Constraints:

Fragment length: 100-2000 bp

length (bp)

PCR Enrichment: higher DNA C. increase → DNA C. 1

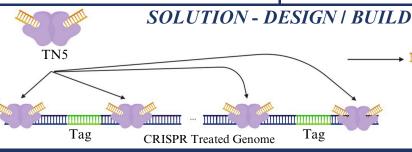
PCR Direction

TESTING RESULTS **DNA Fragmentation Test (R1)** Run PCR Enrichment Test (R2) Run PCR,

several TN5 Reaction

Results: Pass DNA fragments averaging ~1000 bp

obtained


after dna conc (ng/ul A1 B2 Before PCR 6.55 6.39 4.29 5.96 10.75 12.35 21.25 19.3

measure DNA concentration before and

After PCR Results: Pass adapter B samples showed 3x

adapter A's DNA C. Increase.

Utilizes TN5 enzymes to shear and ligate adapters to an in tact genome, produces same product as the GUIDE-seq shearing and ligation steps.

DNA Sequencing

PCR

Enrichment