Quantum Dot Gene Delivery for the Treatment of Neovascular Biomedical Engineering, **Age-Related Macular Degeneration**

Christian Lijo, Anthony Colella, Jordon Fox | Dr. Wan Shih, Dr. Wei-Heng Shih, Ajay Kuriyan

Need

- Leading cause of blindness in individuals ≥ 50
- Overexpression of Vascular Endothelial Growth Factor (VEGF)

Existing:

- Anti-VEGF drugs: Repeated injections & potential side effects
- Quantum Dots (non-viral gene delivery):

Potentially cytotoxic

Objective

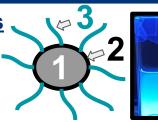
Develop a **non-cytotoxic** quantum dot vector capable of delivering a gene therapy

Design Inputs

- C1: Biocompatibility non-cytotoxic
- **R1:** Size ≤ 30 nm (nuclear transport)
- **R2:** Charge ≥ 10 mV (endocytosis)
- **R3**: Photoluminescence ≥ 200k a.u. (biotracker)
- **R4:**Stability maintain R1, R2, R3 for ≥ 72 hours

Solution **Quantum Dots**

Nanoparticles capable nuclear transport and plasmid DNA delivery


- Zinc Sulfide

Core

Negatively

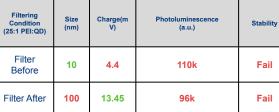
Nutrients

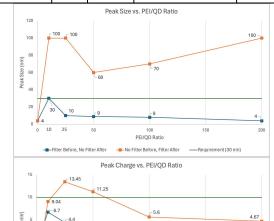
charged

Positively charged

Ratio of PEI:QD

charge


influences size and


- 2 Capping Molecule 3 - Polymer (MPA/MPS) (PEI)
- Mercaptopropionic acid (MPA) &

3-mercaptopropyltrimetho -

- xysilane (MPS)
- Stability and protection Photoluminescent

Results

Future

Revisions:

- Builds with different conditions accomplish different requirements
- Further testing needed to identify optimal conditions & stronger stability

Impact:

- General gene delivery vehicle
 - Biotracker to be used in research.