22 Real-time tracking for studying fly behavior in health and disease

Wisdom Iwueze, David Krikheli, Tato Baratashvili Advisor: Dr. Vikas Bhandawat

Need

User & Problem: Developing real-time

pose estimation methods to quantify and study Drosophila behavior

Existing Limitations:

- Extreme errors
- Computationally expensive
- Sensitivity to image imperfections

Objectives:

Reduce extreme errors

Reduce latency of pose estimation

Design Inputs

Constraints:

C1. Experimental Setup

C2. Video Properties

C3. Number of Keypoints

Requirements:

R1. aPCK error: 5% R2. Latency: 15ms

Extreme Errors

Solution - Design/Build

RTMPose: Backbone - CSPNeXt (ConvNet + CSP); Neck - 7x7 ConvNet, FC, GAU; Head -SimCC

Verification

aPCK test: Predict keypoints on 562 frames and compare them with human annotations and calculate the percentage of incorrect keypoints Result: 7.09% FAIL

Latency Test: Run the solution on CPU and

measure prediction latencies on 562 frames Result: 8.32 ms PASS

Network	# of Parameter s	Latency (ms)
DeepLabCut	25.28 M	197
Solution	3.619 M	8.32

Future

Increasing the size of the solution could improve accuracy at the cost of latency.

Try out new model configurations to reduce aPCK error and latency of the network

