Osseointegrative 3D-Printed Ankle Fusion Cage for Diabetic Patients Engineering, Science

Emma Barnes, Sylvia Cho, Lynette Fordwuo, Sebastian Sciacca Advisor: Dr. Steven Kurtz, PhD, Dr. Selene Parekh, MD

W1. AM200

80% Porosity

AM200

29.0

28.0

27.0

81.0

A60 A80

60% Porosity

and Health Systems Need Solution → Osteoarthritis: degenerative joint disease that

Intended Use

causes pain, stiffness, and reduced mobility → Impacts 47% Type 2 Diabetes Mellitus (T2DM)

Objective For T2DM patients, design an osseointegrative, Specimen Details

3D-printed PAEK ankle cage that maximizes bone fusion while maintaining mechanical integrity.

patients, many needing ankle fusion surgeries

anatomy or support bone growth, leading to

high failure and revision surgery rates

approach to implants to reduce revisions

→ Current implants fail to match patient

→ Dr. Selene Parekh seeks a personalized

Design Inputs

Constraints Requirements

Time **CT** Database

Printer

Capabilities

Porosity Fidelity ±5% expected

Dimensional Fidelity

 $\pm 2\%$ expected

Static Ultimate Load $axial \ge 2.001kN$

shear > 1.534kN

3 Post-**Processing:**

1 Material:

2 Porosity:

Verification Tests

E 25.0

24.0

ر 62.0

VT3: Static Ultimate Load

→ Reduces chronic pain

Impact

→ Improves ankle fusion

VT1:

Dimensional

Fidelity

VT2:

Porosity

Fidelity

6.0

- → Better quality of life for OA patients
- → Torsion testing

Future

- → Porosity gradient
- → Selective cage wall placement