NeuroPulse: Preserving Neurological Basil Damra, Jacob Donchez, Skye Goldman, Meghan Willner **Function in Out-of-Hospital Cardiac Arrest**

User and Problem

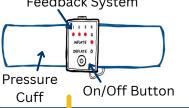
Out of Hospital Cardiac Arrest has a 67% chance of neurological damage. Remote Ischemic Conditioning is theorized to prevent this through controlled blood flow restriction and reperfusion.

Need

Objective

Design an RIC device for EMS to enable researchers to evaluate the efficacy of RIC in improving neurological outcomes post-OHCA.

Design Inputs



Pressure Range and Lightweight 126-146 mmHg

Active Life >40 min (1 cvcle)

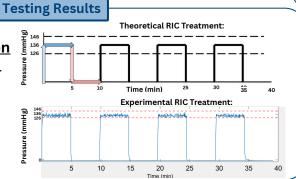
Self-Contained Battery

Solution-Design Feedback System

Solenoid

Solution-Build

Test 1 - Pressure Generation


What: Validate pressure range.

How: **PASS** (136 +/- 10 mmHg)

Test 2 - Active Life

What: Evaluate battery life.

How: **PASS** (> 40 min)

Revisions

Increase robustness, mechanical failsafe, screen interface, data storage **Impact**

Future Directions

Improve neurological outcomes & support RIC research.

Acknowledgements

Thank you to: Dr. Kenneth Barbee, Dr. Adam Sigal, our

DUCOM team,

EMT participants, and the School of Biomed.