

Development and Optimization of GelMA Hydrogels for Controlled Dual-Drug Release in Chronic Wound Healing

Eva Elizabeth Kraus^[1], Kara L. Spiller, PhD^[1]

[1]School of Biomedical Engineering, Science & Health Systems, Drexel University

PROBLEM & NEED

Ulcer-

Hyporesponsive macrophages lose their inflammation capacity

Need additional support from artificially introduced cytokines and proteins to restore immune function

Issue of Geriatric Diabetic Wounds

- Affect 2.5% of U.S. population
 - -10.5 million patients
- -Can lead to:
- -Systemic infection
- -Multi-organ dysfunction
- -Amputation
- -Death[1]

27% survival rate 5 years post amputation[2]

GOAL

To co-deliver IFN-y and ADA-1 to enhance wound healing by inducing a proinflammatory environment and rescuing the diminished immune response

DESIGN INPUTS

Requirements

- (R01) Delivery of ≥100 ng IFN-y in 2 days
- **(R02)** Delivery of ≥21.5 µg ADA-1 in 2 days
- · (R03) Hydrogel handleability
- (R04) Clinically usable geometry (1–10 cm²)

Objective: Murine-scale model recommendation for in-vivo testing for 4 days w/ 200 ng IFN-y

Constraints

- Material → GelMA due to lab expertise
- Resource → Time, budget, & availability of resources
- Experimental → Adherence to experimental protocols and availability of verification tools.

DESIGN + VERIFICATION

CONCLUSIONS

- GelMA hydrogels enable tunable, sustained IFN-y delivery.
- ADA-1 delivery remains a challenge for dual-drug systems.
- Hydrogel properties significantly impact cytokine release.
- Computational modeling validates and optimizes drug release profiles.
 - Predictive model provides a valuable tool for hydrogel design
- Foundation laid for in-vivo testing in chronic wound models.

ACKNOWLEDGEMENTS

A special thank you to my faculty advisor, Dr. Kara Spiller and my mentor, Samuel Sung, MS. I would also like to thank the entire Biomaterials and Regenerative Medicine Laboratory team for providing this opportunity and supporting me during this thesis research journey.

References: [1] Sen, C. K.. (2023). Human Wound and Its Burden: Updated 2022 Compendium of Estimates. Advances in Wound Care, 12(12), 657–670. https://doi.org/10.1089/wound.2023.0150 [2] Jupiter, D. C., Thorud, J. C., Buckley, C. J., & Shibuya, N. (2016). The impact of foot ulceration and amputation on mortality in diabetic patients. I: From ulceration to death, a systematic review. International wound journal, 13(5), 892–903. https://doi.org/10.1111/iwj.12404