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PEEK as a substitute for metallic alloys in

orthopaedic applications @@ |
|

General properties/characteristics:
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A high performance engineering thermoplastic — good
mechanical and wear properties - can be molded into
complex shapes - can be reinforced

Ultimate Stress ~ 100MPa; Elastic modulus about 3
GPa

Tg ~ 143C

Semi-crystalline, ~¥30%-35%

Resistant to high ionizing radiation and chemical attack
Stable up to 300C

Biocompatible; biologically inert

WWW. de.zeusinc.com




PEEK as a substitute for metallic alloys in
medical device applications — mechanical
considerations

* Are the mechanical properties (deformation,
creep, fracture, fatigue) adequate for load-
bearing musculoskeletal applications?

* Focus of this overview — recent studies
characterizing the fatigue resistance of PEEK
and PEEK composites




Brief background - Three approaches to
fatigue analyses:

* Stress-Life (S-N)
e Strain-Life (&-N)
* Fracture mechanics
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e-N Fatigue Approach (Manson-Coffin)

} Also a total life approach:
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e-N Fatigue Approach

-This approach considers
Plastic deformation such as \S
might occur locally at a
notch

- That is, regardless of the
external mode of loading
(cyclic stress or strain
controlled), the notch
experiences a strain-
controlled condition due to
the surrounding mass of
elastic material
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Cyclic Hardening/Softening seen in g-N Tests
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Metals can Cyclic Harden or Soften

- 3rd

1st, 5th
reversals

(a) Fully annealed (b) Partially annealed
Ae =0.0084 Ae=0.0078 77
2N, = 8060 reversals 2N;= 4400 reversals Z

213rd
1st reversal

(¢) Cold worked
- Ae=0.0099
2N;= 2000 reversals

OFHC Copper
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Polymers only Cyclically Soften
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Fatigue Crack Propagation Approach (Paris law)

AK, ksivin~

Focus is on the kinetics of fatigue crack
growth (N,)

da/dN = CAK™

AK = Ac(F)(ra)?>

where da/dN = fatigue crack growth rate;
AK = stress intensity factor range; and,
C,m = f(material variables, environment,
frequency, temperature, stress ratio)

Cis the intercept at AK=1; mis the slope

o7 1 9| \ ! [ B R
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AK, Stress Intensity Range, MPav/m~

log AK

da/dN, inches/cycle

da/dN, Crack Growth Rate, mm/cycle
T
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Fatigue Behavior of PEEK Materials
Recent Studies




S-N Fatigue of PEEK
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- Very high cyclic stresses (near upper yield point and ultimate
stress) required for failure of Injection Molded PEEK

- Unfilled Victrex 450G; rotating cantilever bending, R =-1; 37C
PBS solution; 30Hz
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S-N Fatigue of PEEK is Notch Sensitive
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- N; shortened with increase in notch severity
- Optima LT1, Invibio; R~0; Preconditioned and
tested in 37C PBS solution; 2 Hz

’x]:é_ T Sobieraj et al, Biomaterials, 2010




S-N Fatigue of PEEK is Notch Sensitive
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- Again, very high cyclic stresses required for failure of IM PEEK
- Surface porosity negatively affects S-N fatigue life
- Zeniva™ 500, Solvay Specialty Polymers; R = 0.05; RT; 1 Hz
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Surface porous PEEK S-N Fatigue Compares
Favorably with PMMA and Porous Tantalum

o o 100
80 ’ F}EEK—SP ‘ a PEEK |
SN . PEEK
£ | 80 | |...-,.-.. ® . o>
_g 404 st R s -"-‘:h.:
) - A
2 PEEK-SP
| | °l 4 4 AR 3 Ry
0 5 10 3 ﬁ - ‘;F: . LB
Strain (%) »

ve
Teat I

40 | AT
x D Tantalum BP

Stress (MPa)

20 PMMA
0 1 1 1
100 102 104 108

Cycles to Failure

Evans et al., Acta Biomaterialia 2015



S-N Fatigue of PEEK - Observations

- Unfilled PEEK demonstrates quite good S-N fatigue
behavior, at RT and PBS 37C

- Maintains reasonable S-N life with surface porosity

- Notching and severe stress concentrations will reduce life
via truncation of N




e-N Fatigue of PEEK
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- PEEK exhibits cyclic softening, consistent with other polymers

- Note the surface temperature rise to 50-60C (T, = 143C); there appears to be a
thermal component contribution in these tests (reduction in elastic modulus)

- The presence of a transition is consistent with other thermoplastic polymers

- TECA PEEK™, Ensinger; R=-1 (strain); RT; 0.5 Hz
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e-N Fatigue of PEEK
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Cyclic softening occurs more rapidly at higher strain rates
At all strain rates, there is an initial phase, followed by transition, followed by steady-state
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e-N Fatigue of PEEK
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e-N life can be decomposed into elastic and plastic strains per Manson-Coffin
relationship
Plastic strains dominate, even in the high cycle fatigue regime

ga= (0'/E)(@N¢)° + £'f(2N¢)
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e-N Fatigue of PEEK
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- With softening, the hysteresis loop is enlarged

- A cyclically-stabilized o-€ curve can be compared to the monotonic
- Model using a Ramberg-Osgood approach: g.=c/E ¢,=(c/K')¥/™

(e, o =K'e",)

Where K’ is the cycle strength coefficient and n’ is the cyclic strain hardening exponent

€a= € t&

Shrestha et al, Int J Fat 2016
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e-N Fatigue of PEEK

100 b
80 - 120 -
60 90
40 e 60 -
o A {’__ . ? .....
[« r:, . 7’ ’ -~ o 2
5 20 1L ”I' = E 30
" it Ll ®
£’ ST A 5 °
20 o o~ ot 0 .30
' — 7' ¢” a' -
-40 8l Sl S 60 et
o st i ot 1st Cycle, 0.5 Hz
-60 - S Half-life, 1 Hz -90 P Half-life, 0.5 Hz
| £ e 1st CYC'G. 3 Hz 120 e 18t Cycle, 1 Hz
— - ~Half-life, 3 Hz — - - Half-life, 1 Hz
-100 =150
-0.025 -0.015 -0.005 0.005 0.015 0.025 -0.04 -0.02 0 0.02 0.04
Strain (mm/mm) Strain (mm/mm)

(a) (a)

- Cyclic behavior is affected by test frequency

- Note the hysteresis expansion with increase in test frequency

- Specimen temperature increased somewhat with increase in test frequency
- Degradation in modulus was observed
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e-N Fatigue of PEEK
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- Cyclic lifetime may increase with an increase in test frequency
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e-N Fatigue of PEEK
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e-N Fatigue of PEEK — crack initiation

a b

Direction of crack
propagation

Fig. 7 - (a) Fracture surface of a fatigued specimen at 0.025 mm/mm strain amplitude showing the incubation and crack
propagation region, (b) the direction of crack propagation, and (c) incubating particle.

Cracks initiate at micro-inclusions, pores, microcracks; fatigue striations can be identified in
stable crack propagation regime

UNIVERSITY
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e-N Fatigue of PEEK

Niotal = Ninc T Nmsc/psc + Nic

Where

N.,. =cyclestoincubate a crack

Nyse = cycles, propagation of a microstructurally small crack
Nece = cycles, propagation of a physically small crack

N, c = cycles for long crack propagation (LEFM regime)

% o ETER FEE Simsiriwong et al, IMBBM 2015




e-N Fatigue of PEEK
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Model appears to be predictive of fatigue life — incubation life dominates at low cyclic
strains
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e-N Fatigue of PEEK - observations

- May be a useful approach to evaluate
and predict incubation and initiation of

cracks from blunt notches in
components where the local conditions
are under strain control

- Even low frequency cyclic straining can
potentially lead to thermal variations
that affect fatigue life; may need to be
accounted for unless adiabatic

\S

conditions are assured




Fatigue Crack Propagation Behavior of PEEK
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- Carbon fiber reinforcement (PAN) can improve FCP resistance
-  PEEK-OPTIMA™ LT1, Invibio; Pitch CFR (PEEK-OPTIMA Wear Performance™);
PAN CFR (PEEK-OPTIMA Reinforced™); R= 0.1; RT (air cooled); 5 Hz
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Fatigue Crack Propagation Behavior of PEEK




Fracture Appearance

notch crack growth direction 2mm
* ———-

s *’mvy a3

Unflld PEEK

Unfilled PEEK: fatigue striations are evident in stable crack growth regime, transitioning to
parabolic markings
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Fracture Appearance

notch crack growth direction 2mm

¥

fiber fracture

CFR PEEK:

Matrix deformation;
fiber pull-out; fiber
fracture

fiber pullout £

| Pan crr peex i
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Fatigue Crack Propagation Behavior of PEEK/HA
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- HT-LS AM PEEK/HA; R =0.1; RT; 3 Hz
- Achieved stable fatigue crack growth
- Fracture toughness ~

-  PEEK OPTIMAZ® LT1 Invibio, 2% HA; Commercial: Quadrant EPP Ketron 1000
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FCP Behavior of PEEK versus Other Materials
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Summary/ Directions for Future Studies

- S-N, €-N, and fatigue crack propagation resistance of PEEK is
generally high and compares favorably with other structural
polymers

- S-N is subject to surface conditions; notching

- &-Nis subject to specimen heating arising from cycling

- FCP can be enhanced with CFR (with attention paid to the
processing conditions)

- Stable FCP can be achieved in HT-LS PEEK/HA (promising for
additively manufactured constructs)

- Still little information on fatigue and fracture performance of
medical grade PEEK, particularly for modified and additively
manufactured formulations and under physiologically-relevant
conditions
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