

Recent Developments in Understanding the Fatigue Behavior of PEEK Materials

Clare Rimnac, Ph.D. Distinguished University Professor Wilbert J. Austin Professor of Engineering

Kurtz, PEEK Biomaterials Handbook, 2nd Ed.

Disclosures and Acknowledgements

- Funding received from Musculoskeletal Transplant Foundation (not related to this work)
- Senior Associate Editor, CORR
- Thanks to Michael Sobieraj, MD, PhD for coauthoring the related Chapter 5 in the PEEK Biomaterials Handbook, 2nd Edition

PEEK as a substitute for metallic alloys in orthopaedic applications

General properties/characteristics:

- A high performance engineering thermoplastic good mechanical and wear properties - can be molded into complex shapes - can be reinforced
- Ultimate Stress ~ 100MPa; Elastic modulus about 3 GPa
- Tg ~ 143C
- Semi-crystalline, ~30%-35%
- Resistant to high ionizing radiation and chemical attack
- Stable up to 300C
- Biocompatible; biologically inert

PEEK as a substitute for metallic alloys in medical device applications – mechanical considerations

• Are the mechanical properties (deformation, creep, fracture, fatigue) adequate for loadbearing musculoskeletal applications?

 Focus of this overview – recent studies characterizing the fatigue resistance of PEEK and PEEK composites

Brief background - Three approaches to fatigue analyses:

- Stress-Life (S-N)
- Strain-Life (ε-N)
- Fracture mechanics

S-N Fatigue Approach (The Wöhler Curve)

Mechanical Behavior of Materials, N.E. Dowling

ε-N Fatigue Approach (Manson-Coffin)

Also a total life approach:

$$N_i + N_p = N_f$$

 $\varepsilon_a = (\sigma'_f / E)(2N_f)^b + \varepsilon'_f (2N_f)^a$
 $\varepsilon_a = \sigma_a / E + (\sigma_a / K')^{1/n'}$

Can accommodate large plastic strains (low- and high-cycle fatigue

regimes)

Mechanical Behavior of Materials, N.E. Dowling

ε-N Fatigue Approach

-This approach considers Plastic deformation such as might occur locally at a notch

- That is, regardless of the external mode of loading (cyclic stress or strain controlled), the notch experiences a straincontrolled condition due to the surrounding mass of elastic material

www.efatigue.com/constantamplitude/strainlife

Cyclic Hardening/Softening seen in ϵ -N Tests

Copyright ©2013 Pearson Education, publishing as Prentice Hall

Mechanical Behavior of Materials, N.E. Dowling

Metals can Cyclic Harden or Soften

Deformation and Fracture Mechanics of Engineering Materials, R.W. Hertzberg et al. 5th Edition

Polymers only Cyclically Soften

Rabinowitz and Beardmore, J Mater Sci 1974

Fatigue Crack Propagation Approach (Paris law)

Focus is on the *kinetics* of fatigue crack growth (N_p)

da/dN = C Δ K^m Δ K = $\Delta \sigma$ (F)(π a)^{0.5} where da/dN = fatigue crack growth rate; Δ K = stress intensity factor range; and, C,m = f(material variables, environment, frequency, temperature, stress ratio) C is the intercept at Δ K = 1; m is the slope

log ∆K

Mechanical Behavior of Materials, N.E. Dowling

Fatigue Behavior of PEEK Materials Recent Studies

S-N Fatigue of PEEK

Very high cyclic stresses (near upper yield point and ultimate stress) required for failure of Injection Molded PEEK
Unfilled Victrex 450G; rotating cantilever bending, R = -1; 37C PBS solution; 30Hz

Du and Rimnac, Unpublished Data, 2018

S-N Fatigue of PEEK is Notch Sensitive

- N_i shortened with increase in notch severity
- Optima LT1, Invibio; R~0; Preconditioned and
- tested in 37C PBS solution; 2 Hz

Sobieraj et al, Biomaterials, 2010

S-N Fatigue of PEEK is Notch Sensitive

 $A_T = A_{LB} + A_{PORE}$

Torstrick et al., CORR 2016

Surface porous PEEK S-N Fatigue Compares Favorably with PMMA and Porous Tantalum

Evans et al., Acta Biomaterialia 2015

S-N Fatigue of PEEK - Observations

- Unfilled PEEK demonstrates quite good S-N fatigue behavior, at RT and PBS 37C
- Maintains reasonable S-N life with surface porosity
- Notching and severe stress concentrations will reduce life via truncation of $\ensuremath{\mathsf{N}}_{\ensuremath{\mathsf{i}}}$

 $\epsilon\text{-N}$ Fatigue of PEEK

- PEEK exhibits cyclic softening, consistent with other polymers
- Note the surface temperature rise to 50-60C ($T_g = 143C$); there appears to be a thermal component contribution in these tests (reduction in elastic modulus)
- The presence of a transition is consistent with other thermoplastic polymers
- TECA PEEK[™], Ensinger; R= -1 (strain); RT; 0.5 Hz

$\epsilon\text{-N}$ Fatigue of PEEK

Cyclic softening occurs more rapidly at higher strain rates At all strain rates, there is an initial phase, followed by transition, followed by steady-state

 ϵ -N Fatigue of PEEK

 $\epsilon\text{-N}$ life can be decomposed into elastic and plastic strains per Manson-Coffin relationship

Plastic strains dominate, even in the high cycle fatigue regime

$$\varepsilon_a = (\sigma'_f / E)(2N_f)^b + \varepsilon'_f (2N_f)^c$$


```
\epsilon-N Fatigue of PEEK
```


- With softening, the hysteresis loop is enlarged
- A cyclically-stabilized $\sigma\text{-}\epsilon$ curve can be compared to the monotonic
- Model using a Ramberg-Osgood approach: $\varepsilon_e = \sigma/E$ $\varepsilon_p = (\sigma/K')^{1/n'}$

 $(\varepsilon_p \rightarrow \sigma = K' \varepsilon^{n'}{}_p)$ Where K' is the cycle strength coefficient and n' is the cyclic strain hardening exponent $\varepsilon_a = \varepsilon_e + \varepsilon_p$


```
\epsilon\text{-N} Fatigue of PEEK
```


- Cyclic behavior is affected by test frequency
- Note the hysteresis expansion with increase in test frequency
- Specimen temperature increased somewhat with increase in test frequency
- Degradation in modulus was observed

 ϵ -N Fatigue of PEEK

- Cyclic lifetime may increase with an increase in test frequency

 ϵ -N Fatigue of PEEK

 ϵ -N N_f can be reasonably predicted using the Manson-Coffin relationship

ϵ -N Fatigue of PEEK – crack initiation

Fig. 7 – (a) Fracture surface of a fatigued specimen at 0.025 mm/mm strain amplitude showing the incubation and crack propagation region, (b) the direction of crack propagation, and (c) incubating particle.

Cracks initiate at micro-inclusions, pores, microcracks; fatigue striations can be identified in stable crack propagation regime

Simsiriwong et al, JMBBM 2015

ϵ -N Fatigue of PEEK

$$N_{total} = N_{inc} + N_{MSC/PSC} + N_{LC}$$

Where

- N_{inc} = cycles to incubate a crack
- N_{MSC} = cycles, propagation of a microstructurally small crack
- N_{PSC} = cycles, propagation of a physically small crack
- N_{LC} = cycles for long crack propagation (LEFM regime)

ϵ -N Fatigue of PEEK

Model appears to be predictive of fatigue life – incubation life dominates at low cyclic strains

Simsiriwong et al, JMBBM 2015

$\epsilon\text{-N}$ Fatigue of PEEK - observations

- May be a useful approach to evaluate and predict incubation and initiation of cracks from blunt notches in components where the local conditions are under strain control
- Even low frequency cyclic straining can potentially lead to thermal variations that affect fatigue life; may need to be accounted for unless adiabatic conditions are assured

Fatigue Crack Propagation Behavior of PEEK

- Carbon fiber reinforcement (PAN) can improve FCP resistance
- PEEK-OPTIMA[™] LT1, Invibio; Pitch CFR (PEEK-OPTIMA Wear Performance[™]);
 PAN CFR (PEEK-OPTIMA Reinforced[™]); R= 0.1; RT (air cooled); 5 Hz

Fatigue Crack Propagation Behavior of PEEK

Carbon fiber reinforced increased m of Paris relationship versus Unfilled, indicating faster fatigue crack growth

Fracture Appearance

Unfilled PEEK: fatigue striations are evident in stable crack growth regime, transitioning to parabolic markings

CFR PEEK: Matrix deformation; fiber pull-out; fiber fracture

CASE SCHOOL OF ENGINEERING CASE WESTERN RESERVE

Fatigue Crack Propagation Behavior of PEEK/HA

- HT-LS AM PEEK/HA; R = 0.1; RT; 3 Hz
- Achieved stable fatigue crack growth
- Fracture toughness ~
- PEEK OPTIMA[®] LT1 Invibio, 2% HA; Commercial: Quadrant EPP Ketron 1000

Flanagan et al., Poster 1266, ORS 2018

FCP Behavior of PEEK versus Other Materials

Deform Fracture Mech Engr Mater, R.W. Hertzberg

Summary/ Directions for Future Studies

- S-N, ε-N, and fatigue crack propagation resistance of PEEK is generally high and compares favorably with other structural polymers
- S-N is subject to surface conditions; notching
- ϵ -N is subject to specimen heating arising from cycling
- FCP can be enhanced with CFR (with attention paid to the processing conditions)
- Stable FCP can be achieved in HT-LS PEEK/HA (promising for additively manufactured constructs)
- Still little information on fatigue and fracture performance of medical grade PEEK, particularly for modified and additively manufactured formulations and under physiologically-relevant conditions

Thank you!

