Vitamin E Stabilization of Radiation Cross-linked UHMWPE by Diffusion

Ebru Oral, PhD

Harris Orthopaedic Biomechanics and Biomaterials Laboratory Massachusetts General Hospital/Harvard Medical School Boston, MA

eoral@partners.org

Mechanisms of mechanical property loss in radiation cross-linked and melted UHMWPE

Amorphous regions

Residual free radicals

Fatigue strength decrease in cross-linked and UHMWPE

Oral et al. Mechanisms of decrease in fatigue crack propagation resistance in irradiated and melted UHMWPE Biomaterials 27: 917-925 (2006)

Mechanisms of mechanical property loss in radiation cross-linked and melted UHMWPE

	Crystallinity (%)	Elongation-to-break (%)
Unirradiated	63±2	481±40
100-kGy irradiated	69±1	214±7
100-kGy irradiated and melted	58±1	233±16

- → Reduction in plasticity during cross-linking
- → Reduction in crystallinity during post-irradiation melting

Antioxidant Stabilization of UHMWPE

Goal: To stabilize against free radicals without post-irradiation melting and the associated mechanical property loss

Amorphous regions

Residual free radicals

Antioxidant molecules

Vitamin E (Chain breaking antioxidant)

Alternative Vitamin E Incorporation Methods

Pre-consolidation Blending

Post-irradiation Diffusion

Cross-link density saturation in cross-linked UHMWPE

Oral et al. Characterization of irradiated blends of alpha-tocopherol and UHMWPE. Biomaterials 26: 6657-6663 (2005) Oral et al. The effects of high dose irradiation on the crosslinking of vitamin E-blended UHMWPE. Biomaterials 29: 3557-3560 (2008)

Alternative Vitamin E Incorporation Methods

Pre-consolidation Blending

Post-irradiation Diffusion

Available online at www.sciencedirect.com

Biomaterials

Biomaterials 25 (2004) 5515-5522

www.elsevier.com/locate/biomaterials

α-Tocopherol-doped irradiated UHMWPE for high fatigue resistance and low wear

Ebru Oral^{a,b}, Keith K. Wannomae^a, Nathaniel Hawkins^a, William H. Harris^{a,b}, Orhun K. Muratoglu^{a,b,*}

^a Orthopaedic Biomechanics and Biomaterials Laboratory, Department of Orthopaedic Surgery, Massachusetts General Hospital, 55 Fruit Street,
GRJ 1206, Boston, MA 02114, USA

^b Harvard Medical School, Boston, MA, USA

Received 11 September 2003; accepted 19 December 2003

Available online at www.sciencedirect.com

Biomaterials

Biomaterials 28 (2007) 5225-5237

www.elsevier.com/locate/biomaterials

Diffusion of vitamin E in ultra-high molecular weight polyethylene

Ebru Oral^{a,b}, Keith K. Wannomae^a, Shannon L. Rowell^a, Orhun K. Muratoglu^{a,b,*}

^aDepartment of Orthopaedic Surgery, Massachusetts General Hospital, 55 Fruit Street, GRJ-1206, Boston, MA 02114, USA

^bHarvard Medical School, 25 Shattuck Street, Boston, MA 02115, USA

Received 2 July 2007; accepted 19 August 2007 Available online 19 September 2007

Effect of temperature on diffusion (24 hours)

Effect of time on diffusion (120°C)

Diffusion into finished components

Diffusion and Homogenization

Analytical Model of Homogenization

$$C(x,t) = \left(\frac{C_0}{2}\right) \left[erf\left(\frac{h-x}{2\sqrt{Dt}}\right) + erf\left(\frac{h+x}{2\sqrt{Dt}}\right) \right]$$

$$C(x,t) = \left(C_0\right) \left[erf\left(\frac{h-x}{2\sqrt{Dt}}\right) + erf\left(\frac{h+x}{2\sqrt{Dt}}\right) \right]$$

<u>Idealized</u>

<u>Actual</u>

Analytical Model of Homogenization

Mechanical Properties

	Gamma Sterilized UHMWPE	85-kGy vitamin E doped, homogenized and gamma	100 kGy Melted*
UTS (MPa)	52±5	46±3	33±3
e _b (%)	347±35	230±9	245±10
Crystallinity (%)	68±2	71±2	59±2

Fatigue Properties

Hip Wear

10±1 mg/MC

1±1 mg/MC 1±2 mg/MC

Oral et al. Wear resistance and mechanical properties of highly crosslinked UHMWPE doped with vitamin E. Journal of Arthroplasty 21: 580-591 (2006)

Knee Wear

Rim Impingement Fatigue Resistance

Conventional gamma sterilized UHMWPE 28 mm

Vitamin E 28 mm

Vitamin E 40 mm

Real-time aging of vitamin E-stabilized, irradiated UHMWPE

Oral et al. The effect of alpha-tocopherol on the oxidation and free radical decay in irradiated UHMWPE. Biomaterials 27: 5580-5587 (2006)

Effect of Vitamin E on Peri-prosthetic Tissue

- Emulsified injections (up to 10mg) of vitamin E into the knee joints of rabbits showed that there was no inflammation at 12 weeks.
- Vitamin E-stabilized, irradiated UHMWPE plugs implanted into rabbits subcutaneously did not cause chronic inflammation at 12 weeks.
- Canine hip implants prepared with a high surface concentration or uniform concentration (~0.7 wt%) did not detrimentally affect bony ingrowth or chronic inflammation at 3 months.

Conclusions

- Post-irradiation diffusion stabilization of UHMWPE was used to avoid the hindrance of vitamin E in cross-linking UHMWPE.
- Diffusion was achieved by using high temperature doping followed by high temperature homogenization without dimensional stability changes and with fine control of the amount of antioxidant.
- Vitamin E-diffused, irradiated UHMWPE showed lower wear compared to conventional UHMWPE and fatigue resistance higher than irradiated and melted UHMWPE.
- Vitamin E does not appear to have detrimental effects on periprosthetic tissue in animal studies.