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Mechanisms of mechanical property loss in radiation
cross-linked and melted UHMWPE
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Fatigue strength decrease in cross-linked and UHMWPE
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Oral et al. Mechanisms of decrease in fatigue crack propagation resistance in irradiated and
melted UHMWPE Biomaterials 27:917-925 (2006)



Mechanisms of mechanical property loss in radiation
cross-linked and melted UHMWPE

_ Crystallinity (%) Elongation-to-break (%)

Unirradiated 6312 481+40
100-kGy irradiated 6911 21417
100-kGy irradiated and melted 58+1 233116

— Reduction in plasticity during cross-linking

— Reduction in crystallinity during post-irradiation melting



Antioxidant Stabilization of UHMWPE

Goal: To stabilize against free radicals without post-irradiation melting and the associated
mechanical property loss
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Vitamin E
(Chain breaking antioxidant)
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Alternative Vitamin E Incorporation Methods

Pre-consolidation Blending

Post-irradiation Diffusion




Cross-link density saturation in cross-linked UHMWPE
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Oral et al. Characterization of irradiated blends of alpha-tocopherol and UHMWPE. Biomaterials 26: 6657-6663 (2005)
Oral et al. The effects of high dose irradiation on the crosslinking of vitamin E-blended UHMWPE. Biomaterials 29: 3557-
3560 (2008)



Alternative Vitamin E Incorporation Methods

Pre-consolidation Blending

Post-irradiation Diffusion
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Vitamin E Index

Effect of temperature on diffusion (24 hours)
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Effect of time on diffusion (120°C)
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Weight change (%)
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Diffusion into finished components
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Vitamin E Index

Diffusion and Homogenization
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Analytical Model of Homogenization
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Vitamin E Index

Analytical Model of Homogenization
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Mechanical Properties

N -
Gamma doped, 100 kGy
Sterilized homogenized Melted*
UHMWPE and gamma
ctorilizod
UTS
5245 46+3 3343
(MPa)
e
b 347+35 2309 245+10
(%)
Crysf;};'”'ty 6812 7142 5942




Fatigue Properties
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Hip Wear

Cycles (MC)
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Oral et al. Wear resistance and mechanical properties of highly crosslinked UHMWPE doped
with vitamin E. Journal of Arthroplasty 21: 580-591 (2006)



Knee Wear
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Rim Impingement Fatigue Resistance

Conventional gamma
sterilized UHMWPE
28 mm

Vitamin E 28 mm Vitamin E 40 mm



Oxidation Index (A.U.)

Real-time aging of vitamin E-stabilized, irradiated UHMWPE
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Oral et al. The effect of alpha-tocopherol on the oxidation and free radical decay in
irradiated UHMWPE. Biomaterials 27: 5580-5587 (2006)



Vitamin E Index (A.U.)
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Effect of Vitamin E on Peri-prosthetic Tissue

Emulsified injections ( up to 10mg) of vitamin E into the knee
joints of rabbits showed that there was no inflammation at 12
weeks.

Vitamin E-stabilized, irradiated UHMWPE plugs implanted
into rabbits subcutaneously did not cause chronic
inflammation at 12 weeks.

Canine hip implants prepared with a high surface
concentration or uniform concentration (~0.7 wt%) did not
detrimentally affect bony ingrowth or chronic inflammation at
3 months.



Conclusions

Post-irradiation diffusion stabilization of UHMWPE was used to
avoid the hindrance of vitamin E in cross-linking UHMWPE.

Diffusion was achieved by using high temperature doping followed
by high temperature homogenization without dimensional stability
changes and with fine control of the amount of antioxidant.

Vitamin E-diffused, irradiated UHMWPE showed lower wear
compared to conventional UHMWPE and fatigue resistance higher
than irradiated and melted UHMWPE.

Vitamin E does not appear to have detrimental effects on peri-
prosthetic tissue in animal studies.
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