$-\left(-CH_2-CH_2-\right)$

Oxidation and Stabilisation of Polyethylene

Norman Billingham Department of Chemistry and Biochemistry, University of Sussex, Brighton, UK

Polyethylene

• The simplest polymer?

• Or the most complex?

Polyolefin technology

Polyethylene properties

Properties of commercial PE's

Property	LDPE	HDPE	UHMWPE
Molecular weight	50,000 – 200,000	50,000 – 200,000	>2,000,000
Crystallinity /%	40	60	50-60
Density /gcm ⁻³	0.91 – 0.93	0.94 – 0.97	0.93 – 0.95
Elastic modulus/MPa	100-500	400-1500	1000-2000
Elongation to break /%	50-800	40-1000	>300

Crystallinity in polyethylene

 X-ray diffraction shows mixture of crystals and amorphous material

Toughness in semi-crystalline polymers

- Crystallites act as "cross-links" and "fillers"
- Increase stiffness and toughness
- Polymer responds to load by chains pulling through crystals
- Critically dependent on "tie molecules"

The perfect nanocomposites?

Sensitivity to degradation

 Since the properties of polymers, and of UHMWPE in particular derive from the long molecular chains, anything which breaks those chains can have a very profound effect on properties

Percentage of C atoms reacted = 0.003

Formation of free-radicals

Energy from:

- Reaction of impurities in the polymer –peroxides
- Mechanical breaking of chains
- Irradiation high-energy (γ, e-beam etc)

Radicals from irradiation

Reaction with oxygen

- Oxygen is always present in a polymer exposed to air
- Solubility is ca 1 mmol kg⁻¹ in the amorphous polymer and zero in the crystalline
- Reacts instantaneously with carbon radicals on encounter

Reaction with oxygen II

 Peroxyl radicals are relatively stable but abstract hydrogen to make new C-centred radicals

• Overall we have a chain reaction

The oxidation cycle

Decomposition of hydroperoxides

AUTOACCELERATION

Chain scission reactions of alkoxy radicals

Infra-red analysis of oxidation

 Development of bands in region 1700 – 1750 cm⁻¹ is characteristic of carbonylcontaining products of oxidation (ketones, acids and esters.

Diffusion limited oxidation

Oxygen diffusion controls distribution of oxidation products through thick sections

Effects of oxidation

- Oxygen incorporation increases density and hydrophilicity
- Chain scission allows recrystallisation – "chemicrystallisation"
- Increased density and crystallinity leads to surface cracking
- Polymer changes from tough to brittle

Mechanical Properties

- Increased density and crystallinity leads to surface cracking
- Cleavage of tie molecules stops load transfer via crystals
- Overall loss of toughness

Note that a polymer whose MW is reduced by degradation can be brittle even though a normal sample of same MW is tough

Potential routes for stabilisation

Simple phenolic antioxidant - BHT

- Able to trap peroxy radical
- Producing new radical too stable to reinitiate

Requirements of an antioxidant

In addition to chemical reactivity an antioxidant must have:

- Thermal stability to survive processing
- Good solubility in hydrocarbon polymer
- Low volatility
- Low extractability into contacting liquids
- Low toxicity, especially in food contact

Reaction products of phenolics

Natural antioxidants

Antioxidant synergism in-vivo

Cell membrane

Plasma

Niki, E, Ann. NY Acad. Sci 498, 186, 1987

Oxidation inhibition in hydrocarbons at 190°C

Breese, K D, Lamethe, JF, and DeArmitt, C, Polym. Deg. Stab., 70, 89, 2000

Stabilising effect of Vitamin E

Gamma induced oxidation of HDPE

Mallegol, J, Carlsson, DJ, Deschenes, L, Polymer Deg. Stab. 73 (2), 259-267, 2001

Oxidation products of tocopherol

Al-Malaika, S, Goodwin, C, Issenhuth, S, Burdick, D, Poly. Deg. Stab. 64, 145, 1999

Conclusions

- Polyethylene gets its mechanical properties from the combination of long chain length and semicrystalline morphology
- Chemically insignificant amounts of oxidative degradation affect mechanical properties profoundly by cleaving the important "tie molecules"
- Oxidative degradation is easily initiated by γ or ebam radiation

Conclusions II

- Detailed mechanisms may depend on local solid-state mobility – especially UHMWPE
- Antioxidants are added to essentially all PE products to inhibit oxidation during processing and end use
- Most commercial antioxidants would be excluded from use in medical devices due to potential migration and toxicity
- Vitamin E has potential for medical applications