

Characterization of Network Parameters for UHMWPE Using Plane Strain Compression

Eduardo Abreu, Terin Patel-Wilson, Hung Ngo, Anuj Bellare

Department of Orthopedic Surgery Brigham & Women's Hospital Harvard Medical School

Sept 22, 2011

- •UHMWPE is a linear, highly entangled polymer
- Radiation crosslinking makes it a network
- •Equilibrium Swelling: M_c~5,000-10,000 g/mole
- •At equilibrium entanglement density: M_e=1,240 g/mole (Pearson, 1994)

Lippits, Macromolecules 2006

•GUR 1050 Rod Stock

- *γ* radiation to a dose of 0, 50, 100 and 200 kGy
- maintained at 170°C for 4 hours
- slow cooled to room temperature

Equilibrium Swelling

$$q_{s} - \underline{v}_{f}$$

$$V_{o}$$

$$v = -\frac{\ln(1 - q_{s}^{-1}) + q_{s}^{-1} + \chi q_{s}^{-2}}{\phi_{1} q_{s}^{-1/3}}$$

$$M_{c} = (v.v_{d})^{-2}$$

-V

where φ_1 = 136 cm³/mol , χ = 0.33 + 0.55/q_s and $\nu_d^{-1}\text{=}$ 920 g/ dm^3

Sample	Swell Ratio	v (mole.dm ⁻³)	M _c (g/mole)
PE-0	Dissolved	_	_
PE-50	3.60 ± 0.46	0.154 ± 0.038	6255 ± 1472
PE-100	3.19 ± 0.63	0.207 ± 0.073	5000 ± 1904
PE-200	2.70 ± 0.65	0.325 ± 0.163	3580 ± 1860

Channel-die Compression (Bartczak, 2005)

- Sample geometry: 4 mm x 4 mm x 4.7 mm
- T= 150°C
- Crosshead speed: 0.25 mm/min

Results

Gaussian and Eight Chain Models

Gaussian	$σ_{R} = \mathbf{G}_{N}(\lambda^2 - \lambda^{-2})$
	$v = G_N kT$
Eight Chain	$\sigma_{\rm R} = \frac{G_{\rm N} n^{1/2} (\underline{1}) L^{-1} (\underline{\lambda}_{\rm chain}) (\lambda^2 - \lambda^{-2})}{3 \lambda_{\rm chain}} n^{1/2}$
	(Arruda and Boyce, 1993)
	$\lambda_{chain} = [\frac{\lambda^2 + 1 + \lambda^{-2}}{3}]^{-1/2}$
	$L^{-1}(x) = \frac{x(3-x^2)}{1-x^2}$

Model fits to Experimental Curve

Molecular Parameters

Gaussian Model					
Sample	G _N (MPa)	$^{\nu}$ (mole.dm ⁻³)	M _e (g/mole)		
PE-0	0.566 ± 0.213	0.156 ± 0.064	6767 ± 2677		
PE-50	2.072 ± 0.087	0.589 ± 0.025	1565 ± 66		
PE-100	3.053 ± 0.261	0.868 ± 0.974	1066 ± 86		
PE-200	3.538 ± 0.190	1.006 ± 0.054	917 ± 51		
Eight-Chain Model					
Sample	G _N (MPa) ^ξ	$^{\nu}$ (mole.dm ⁻³)	M _e (g/mole)		
PE-0	0.478 ± 0.182	0.132 ± 0.055	8073 ± 3338		
PE-50	1.617 ± 0.112	0.460 ± 0.032	2010 ± 140		
PE-100	2.086 ± 0.222	0.593 ± 0.063	1566 ± 157		
PE-200	2.432 ± 0.125	0.691 ± 0.036	1334 ± 70		

• Fitting models to deformation of PE provided molecular weight between entanglements

 Crosslink densities obtained from models were much higher than from swelling

Limitations

- Strain rate effects were ignored
- Molecular relaxation ignored

Andreas Gomoll, BWH

Keith Wannomae and Orhun Muratoglu, MGH