

An investigation on the surface and bulk mechanical properties of clinically relevant UHMWPE formulations using nanoindentation and compression testing

> **Sofia Arevalo and Lisa Pruitt Department of Mechanical Engineering** University of California, Berkeley

Motivation for Study

- 900,000 TJR annually in U.S. and majority utilize UHMWPE
- Simple mechanical characterization methods are needed for material comparisons and retrieval analysis
- Numerous clinical formulations of UHMWPE in varying crosslink dose, thermal treatment and antioxidant chemistry

Correlation between compression and nanoindentation

Medical Polymer Group

400

600

Displacement (nm)

800

200

600

500

400

300

200

100

0

-100

0

Load (uN)

Department of Mechanical Engineering

AO

1000

Vitamin E

University of California, Berkeley

UHMWPE Material Type and Manufacturer

GUR 1020 (Orthoplastics)	GUR 1020 AO (Depuy)	GUR 1020 VE (Orthoplastics)	GUR 1050 (Orthoplastics)
GUR 1020 35kGy (Orthoplastics)	GUR 1020 AO 80kGy (Depuy)	GUR 1020 VE 50 kGy (Orthoplastics)	GUR 1050 75kGy RM (Quadrant)
GUR 1020 75kGy RM (Orthoplastics)	Iamellae	GUR 1020 VE 75kGy (Orthoplastics)	2 resins (1020/1050) Range of crosslinking (Doses: 35-125 kGy) 2 antioxidants: AO and VE
C - crystallite A - amorphous		GUR 1020 VE 100 kGy (Orthoplastics)	
		GUR 1020 VE 125kGy (Orthoplastics)	

Methods: Compression and nanoindentation

Compression testing

Nanoindentation testing

M.F. Doerner and W.D. Nix. J Mater Res, 1:601 (1986). Oliver WC and Pharr GM. J. Mat. Res. 7:156 (1992)

Medical Polymer Group

Department of Mechanical Engineering | University of California, Berkeley

Nanoindentation: Load-Displacement Acquisition

50

um

Medical Polymer Group

Department of Mechanical Engineering

University of California, Berkeley

Determination of reduced elastic modulus and hardness Loading Unloading Rr Ri Rì а а he/2he/2 hr hmax hmax hp hp he Elastic half-space Elastic half-space Nanoindentation: Load-Displacement Curves 600 Max Load Pm: max load. hr: residual depth. 500 he: elastic depth. hmax: depth of penetration. 400 hp: depth of the circle of Loading Unloading contact from the specimen Load (uN) 000 free surface. he/2: distance from the bottom of the contact to the 200 contact circle. a: radius of circle in contact. 100 he/2 hp 400 600 800 1000 1200 200 Residual depth (hr) Elastic depth (he)

Medical Polymer Group

Department of Mechanical Engineering

Displacement (nm)

Max-Depth (hmax)

Analytical model based on the Doerner –Nix Model University of California, Berkeley

Results: Nanoindentation and compression mechanical properties

Conclusions

- Our study shows a strong correlation between modulus measurements made though nanoindentation and compression.
- Nanoindentation provides a tool for the surface characterization of UHMWPE. The method provides a valid technique to determine modulus and hardness across climical formulations of UHMWPE.

Ongoing work

Utilization of nanoindentation for the characterization of reduced modulus and hardness in retrievals.

Correlation between surface properties and microstructure.

Acknowledgments

- We would like to thank Orthoplastics, Quadrant and DePuy for supplying materials
- Funding has been provided by National Science Foundation (NSF graduate fellowship) and endowment from Lawrence Talbot Professorship.