

Comparison of macro-, micro- and nanomechanical properties of clinically relevant UHMWPE formulations

Miroslav Slouf, Helena Vlkova, Veronika Gajdosova Institute of Macromolecular Chemistry, Prague, Czech Republic (micromechanical properties, infrared microspectroscopy)

Sofia Arevalo, Lisa Pruitt

University of California, Berkeley, CA, USA

(macro- and nanomechanical properties, DSC, SAXS

Background of the slides in this presentation:

Yellow slides: Intro, Conclusion Gray slides: Theory, Models

Green slides: Reality, Results

Goethe JW, Faust: All theory is gray, my friend. But forever green is the tree of life.

Introduction

There are many different UHMWPE formulations on the market...

This study: 11 clinically relevant UHMWPE formulations, coming from USA [1].

Sample series	Sample ID	Full sample name	Manufacturer	non-crosslinked
Series 1	PE-1a	GUR 1050	Orthoplastic -	
	PE-1b	GUR 1050 75kGy RM	Quadrant –	crosslinked
Series 2	PE-2a	GUR 1020	Orthoplastic 🔍	and remelted
	PE-2b	GUR 1020 35kGy	Orthoplastic	gamma-sterilized
	PE-2c	GUR 1020 75kGy RM	Orthoplastic	84
Series 3	PE-3a	GUR 1020 VE	Orthoplastic —	\rightarrow vitamin E
	PE-3b	GUR 1020 VE 50kGy	Orthoplastic	stabilized
	PE-3c	GUR 1020 VE 75kGy	Orthoplastic –	and crosslinked
	PE-3d	GUR 1020 VE 125kGy	Orthoplastic	
Series 4	PE-4a	GUR 1020 AO	De Puy —	new bio-stabilizer
	PE-4b	GUR 1020 AO 80kGy	De Puy	and crosslinked

What was known before we started?

Experiments [1]: macro- and nanomechanical properties \rightarrow somewhat different behavior Theory [2]: micro-hardness of UHMWPE \propto macro-yield/modulus \propto crystallinity What we wanted to study \Rightarrow correlations of macro-micro-nano-properties

In other words: Are micro/nanoindentation suitable for UHMWPE characterization?

References(detailed list of references[1] Malito et al.: JMBBM 83 (2018) 9-19.is given at the end of this presentation).[2] Balta-Calleja: Microhardness of polymers, Cambridge (2000).

Experimental

What mechanical properties did we measure?

Method	Modulus	Yield stress/Hardness *
MACROscopic compression	E	Y
Non-instrumented MICROindentation	-	MH/ <i>H</i> ∨
Instrumented MICROindentation	MHI/E _{IT}	MHI/H _{IT}
Instrumented NANOindentation	NHI/E _{IT}	NHI/H _{IT}

* Yield stress and hardness of semicrystalline polymers are proportional: $H \approx 3Y$

How did we characterize UHMWPE morphology?

- IR: oxidation index (IR/OI), trans-vinylene index (IR/VI), and crystallinity index (IR/CI)
- DSC: heating up to 200 °C, determination of crystallinity (w_c)
- SAXS: average lamellar thicknes (I_c)

What specific questions did we ask?

Q1: Are the macro/micro/nano-properties (*E*, *Y*, *H*) of UHMWPE's different? Q2: Do the macro/micro/nano-properties correlate with crystallinity? Q3: If yes, which properties show the best correlation – macro, micro or nano?

Theory :: Morphology and microhardness in UHMWPE

by

[2]

(1) Additivity law for a semicryst. polymer:

$$\begin{aligned} H &= \sum_{i} v_i H_i \\ H &= v_a H_a + v_c H_a \end{aligned}$$

(2) Microhardness of a semicrystalline polymer is proportional to crystallinity v_c :

- a) for T(measurement) >> $T_g \Rightarrow H_a \approx 0$: $H \approx v_c H_c$
- b) for T(measurement) $\leq T_g \Longrightarrow H_a > 0$:

$$H = v_a H_a + v_c H_c$$

$$H = (1 - v_c) H_a + v_c H_c$$

$$H = H_a + v_c (H_c - H_a)$$

(3) Microhardness of crystalline phase grows with increasing lamellar thickness *I*_c:

$H_c =$	H_c^{∞}	Derivatior
	$1+b/l_c$	Balta-Calleja

(4) Final relation for microhardness of semicrystalline polymers (from Eq. 1-3):

 $H = v_c \times \frac{H_c^{\infty}}{1 + b/l_c} \qquad \begin{array}{c} \textit{v_c dominates} \\ \textit{l_c} = \textit{correction} \end{array}$

- Final result for a typical (UHMW)PE graphically: $\Rightarrow H_v(PE)$ grows with $(v_c, l_c) \rightarrow$ for all semicryst.
 - \rightarrow constants for PE: H_{∞} = 200 MPa, b = 20 nm
 - ightarrow DSC and SWAXS: $w_{\rm c} \approx v_{\rm c} \sim$ 0.6; $I_{\rm c} \sim$ 10 nm
 - \Rightarrow $H_v(PE) = f(v_c, I_c) \approx 40-80 \text{ MPa} \rightarrow \text{Ok}$
- Full justification of H = f(w_c, l_c) & (H_∞, b): Calleja: Microhardness of polymers, 2000.

Theory :: Micro/nanoindentation × macroscale properties

Basic relations between macro and micro/nano-properties of (semicrystalline) polymers.

(1) Indentation hardness (*H*_{*IT*}) is proportional to macroscopic yield stress (*Y*):

 $H_{IT} \approx 3Y$ (Eq. 1)

Tabor's relation [2,3], derived for metals and alloys (plastic), but holds quite well also for polymers (elasto-visco-plastic). (2) Indentation modulus (E_{IT}) is proportional to macroscopic modulus (*E*):

 $E_{IT} \approx E$ (Eq. 2)

Oliver & Pharr theory [4], supported by numerous experiments, including the MHI measurements on polymer systems.

Note #1: All type of micro/nanohardness are (in principle) proportional ($H \propto H_V \propto H_M \propto H_{IT}$).

(3) Modulus and yield stress of amorphous and many semicrystalline polymers are roughly proportional, as derived and verified by Struik [5]: $E \approx 30Y$ (Eq. 3)

(4) Combination of (Eq. 1 + Eq. 2 + Eq. 3) + Calleja's relation ($H \propto w_c \rightarrow$ previous slide) suggests that modulus, yield stress, hardness and crystallinity of semicryst. polymers are proportional:

 $E_{IT} \propto E \propto 30Y \propto 10 H_{IT} \propto 10 H \propto w_c$

The constants in Eq.4 are very approximate, but the linearity usually holds for given polymer and experimental conditions as proved experimentally in many previous studies (refs. [2,6,7]).

Note #2: More precise models relating [H - Y - E] exist, \rightarrow but they are not important here, because the simple equations (Eq.1-4) work for UHMWPE very well.

$$\frac{H}{Y} = \frac{2}{3} \left[2 + \ln\left(\frac{E\tan\beta}{3Y}\right) \right]$$

(Eq. 4)

ECM, derived by Johnson [2]

Results :: Structure vs. properties of various UHMWPE's

Q1: Are the macro/micro/nano-properties (*E*, *Y*, *H*) of UHMWPE's different? Q2: Do the macro/micro/nano-properties correlate with crystallinity?

Conclusions (for stiffness-related macro/micro/nanomechanical properties = H-Y-E): Q1: UHMWPE properties are significantly different, if their crystallinities are different. Q2: UHMWPE properties correlate with crystallinity – in agreement with theory. The correlation with crystallinity is applicable as a criterion of H-Y-E measurement correctness! Reasons: theoretically predicted, established in literature & verified here for our UHMWPE's ↑6

Results :: Crystallinity × yield stress and hardness

Q3: How do the macro/micro/nano-properties correlate with crystallinity?

Results :: Statistical evaluation of ALL correlations

Correlation matrix table (in the form of heatmap) showing Pearson's correlation coefficients r. Note: total positive linear correlation \Rightarrow r = 1 (dark), no correlation \Rightarrow r = 0 (bright)

Bright cross in the middle = weak correlations of NANO-properties with all other quantities.

Supplement :: Precision and accuracy of our methods

Macro/micro/nanomechanical measurements from the point of view of precision and accuracy.

- Accuracy (\approx correctness) = strength of correlation with crystallinity (Pearson's r)
- Precision (\approx scatter of the data) = relative standard deviation (RSD = sd/mean \times 100%)

Accuracy \approx Pearson's *r*: MHI \geq MACRO >> NHI.

Precision ≈ RSD: MHI ≥ MACRO >> NHI.

Conclusion: Nanoindentation is the least precise and the least accurate.

Accuracy \approx Pearson's r: MH \geq MHI \geq MACRO >> NHI.

Precision ≈ RSD: MH > MNI > MACRO >> NHI.

Conclusions: The most precise and accurate is non-instrumented (!) microindentation.

Summary and conclusions

0) Eleven clinically relevant UHMWPE formulations were collected.

- 1) Their mechanical properties were characterized at multiple length scales by... ...MACROscopic compression, MICROindentation , and NANOindentation
- **2)** Theoretical predictions suggested that crystallinity should be the decisive parameter determining the stiffness-related properties (*E*, *Y*, *H* = modulus, yield stress, hardness):

 $E_{IT} \propto E \propto 30Y \propto 10H_{IT} \propto 10H \propto w_c$

3) Experimental results showed that the strength of crystallinity-properties correlations decreased in the following order:

MICROindentation \geq **MACRO**scale compression >> **NANO**indentation

- **4) This confirms that MICROindentation is reliable** tool for characterization of polymers... ...which somehow corrects the conclusions about indentation in *UHMWPE handbook* ...and confirms the conclusions in the key book in the field: *Microhardness of polymers* [2]
- 5) This does not mean that NANOindentation is bad...

...BUT it seems to be extremely sensitive to surface preparation, properties and/or artifacts

6) Stiffness-related macro- and micromechanical properties (*E*, *Y*, *H*) of various UHMWPE's are significantly different ON CONDITION that their crystallinities are different. (other parameters like crosslinking density, sterilization etc., play minor role)

Acknowledgement

Helena Vlkova, Veronika Gajdosova

Institute of Macromolecular Chemistry, Prague, Czech Republic (non-instrumented + instrumented microindentation, IR microspectroscopy)

Sofia Arevalo, Lisa Pruitt

University of California, Berkeley, CA, USA (materials, macroscale compression tests, nanoindentation, DSC, SAXS)

Financial support

NV15-31269A: Ministry of Health of the Czech Republic PAN-17-18: Czech-Polish inter-academy collaboration TE01020118: Technology Agency of the Czech Republic

Thank you for your attention!

Supplement :: Statistical evaluation of ALL correlations

Correlation matrix table (in the form of heatmap) showing *P*-values.

Here: *P*-value = probability that we get so strong or stronger correlation just by coincidence.

