

Equivalent Mechanical Properties of X-Ray and E-Beam Crosslinked Vitamin E Blended Polyethylene

1. Introduction

Oxidation \leftrightarrow

Oxidation – 14 years Shelf-Life

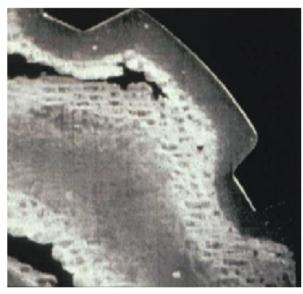
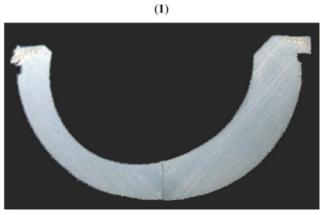



Figure 8 : Polyéthylène âgé de 14 ans stocké sur étagère.

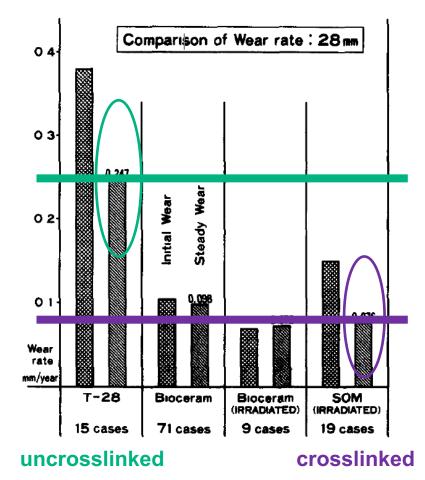
[Maîtrise othopédique, n° 204, Mai 2011]

Wear

(2)

[Gómez-Barrena et al. 2009]

 \leftrightarrow Osteolysis



[Klutzny, Uni. Magdeburg, 2018]

1. Introduction

Oonishi et al. used the radiation crosslinking at the beginning of the 1970s

BRAUN SHARING EXPERTIS

XLPE (= highly crosslinked polyethylene) acetabular liners have shown significant improvements in decreasing wear and osteolysis in total hip arthroplasty patients


[Kurtz et al. 2011, Oral and Muratoglu 2011, Bragdon et al. 2011]

- \rightarrow Crosslinking : Reduce wear
- \rightarrow Vitamin E : Oxidation Stabilisation

1. Introduction: Why X-ray?

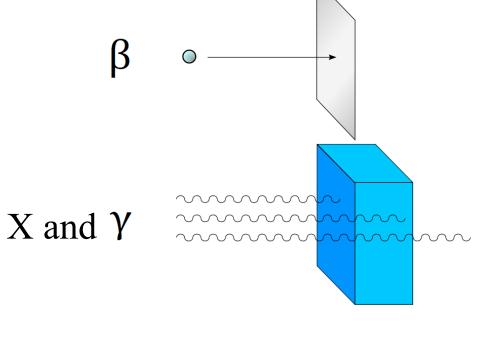
Advantages of warm irradiation

"<u>warm irradiation</u> allowed for increased preservation of the antioxidant, increased grafting, increased cross-linking and decreased wear."

[Oral et al, 2011, 2013]

 \Rightarrow Temperature control during processing necessary

1. Introduction: Why X-ray?


Advantages of X-ray crosslinking

- High penetration depth
- Moderate dose rate

	Dose rate [kGy/s]	Penetration depth
Gamma rays	0.001	+++
E-Beam	100	
X rays	1-10	+++

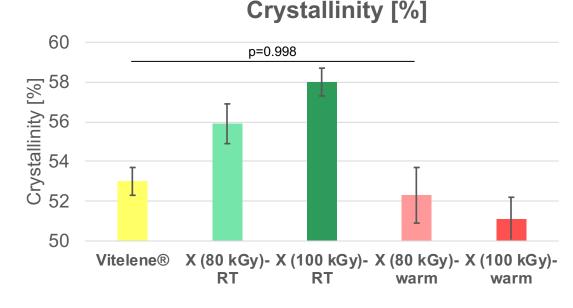
[Stannered, Wikipedia]

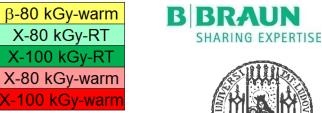
2. Materials and Methods

Materials

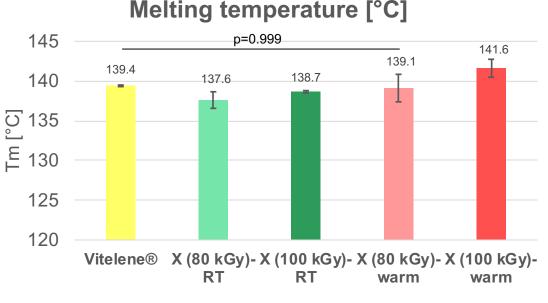
	Raw Material	Dose [kGy]	Temperature
E-Beam (Vitelene [®])	Chirulen®1020E	80	Warm
X-Ray		80	Room (RT)
			Warm
		100	Room (RT)
			Warm

Methods


- Differential scanning calorimetry acc. ASTM F2625
- Uniaxial tensile strength acc. ASTM D638
- Biaxial tensile strength, Small Punch Testing (SPT) acc. ASTM F2183
- Izod impact strength acc. ASTM D256


3. Results: thermal properties

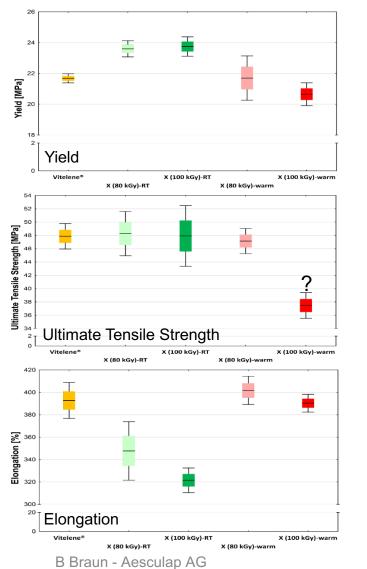
Differential scanning calorimetry ASTM F2625



 $T \Rightarrow$ \Box Crystallinity

Crosslinks inhibit the recrystallization [Slouf et al, 2008]

 $T \Rightarrow 7$ Melting point


Crosslinks disturb the melting of the crystals [Premnath et al, 1999]

No significant difference between E-Beam and X-Ray

4. Results: mechanical properties

Tensile properties ASTM D638

Influence of temperature:

- $\mathsf{T}\, \textbf{7} \, \Leftrightarrow \, \textbf{Yield strength}$
- Loss of crystallinity

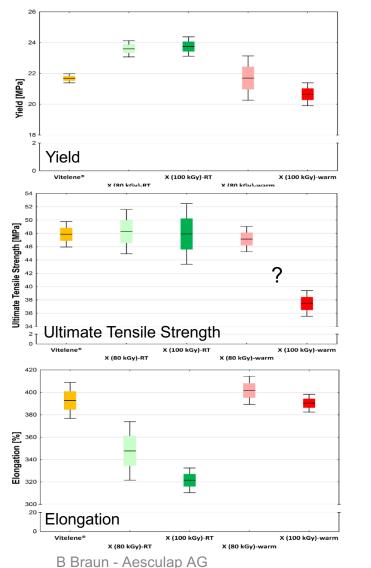
[Bracco et al, 2017]

- $T \land \Rightarrow$ Ultimate strength
- Loss of crystallinity

$T \nearrow \Rightarrow 7$ Elongation at break

- **RT**: Higher crystallinity, higher brittleness, reduced creeping
- > Warm: Lower crystallinity, higher ductility

[George et al, 2014]



4. Results: mechanical properties

Tensile properties ASTM D638

Influence of **dose 7** :

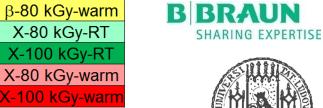
Yield: ⇒ Little effect

Ultimate Tensile Strength (UTS): Room Temperature: no significant difference Warm: UTS 100 kGy << UTS 80 kGy !!!

Loss of crystallinity

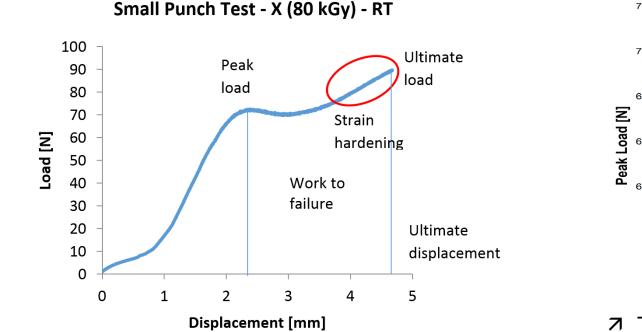
β-80 kGy-warm X-80 kGy-RT X-100 kGy-RT X-80 kGy-warm X-100 kGy-warm

No significant difference between E-Beam and X-Ray

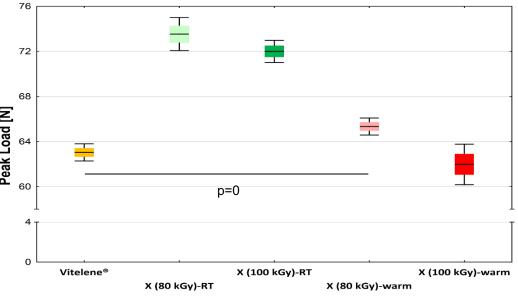

Elongation At Break (EAB):

Room Temperature and Warm : EAB 100 kGy < EAB 80 kGy

▶ Dose $\neg \Rightarrow$ crosslinking $\neg \Rightarrow$ stiffness $\neg \Rightarrow \lor$ ductility



4. Results: mechanical properties Small Punch Testing ASTM F2183



Typical "crosslink" sloop

- Temperature (80 and 100 kGy) ⇒ → Peak Load
- Loss of crystallinity \geq
- 7 Dose warm and $RT \Rightarrow Y$ Peak Load
- Scission/crosslinking 7

4. Results: mechanical properties Small Punch Testing ASTM F2183

Work to Failure [mJ] 8 480 440 7 400 Ultimate Displacement [mm] Work to Failure [mJ] 360 --320 280 240 p=0.986 200 40

X (100 kGy)-warm

X (80 kGy)-warm

Ultimate Displacement [mm]

X (100 kGy)-RT

Temperature and \neg Dose $\Rightarrow \neg$ Ultimate displacement, \neg Work to failure 7

Vitelene®

p=0.996

X (80 kGy)-RT

X (100 kGy)-RT

X (80 kGy)-warm

- **RT**: higher crystallinity, \supseteq strain hardening, \supseteq toughness \succ
- Warm: lower crystallinity, 7 strain hardening, 7 ductility, 7 toughness \succ

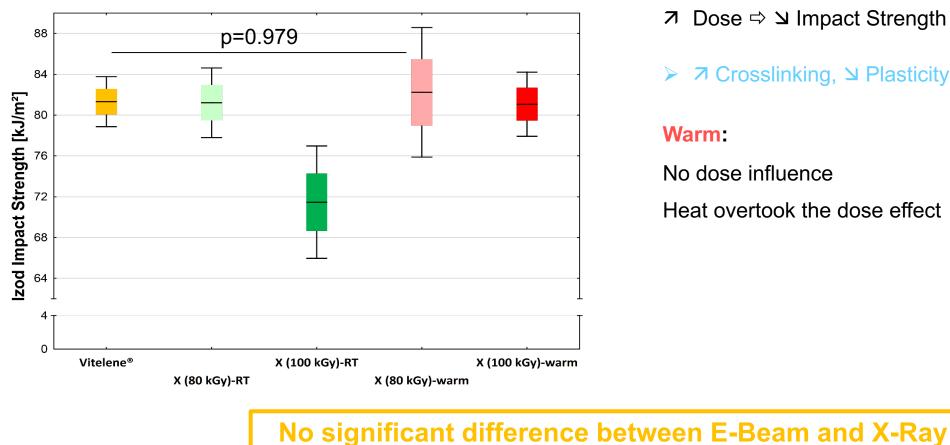
0

No significant difference between E-Beam and X-Ray

X (100 kGy)-warm

X (80 kGy)-RT

0


Vitelene®

4. Results: mechanical properties Izod Impact Strength ASTM D256

β-80 kGy-warm X-80 kGy-RT X-100 kGy-RT X-80 kGy-warm <-100 kGy-warm</p>

Izod Impact Strength [kJ/m²]

Room Temperature:

- **7** Dose ightharpoints → Impact Strength

Warm:

No dose influence

Heat overtook the dose effect

5. Conclusion

- 1. Increasing processing temperature
 - ➤ ❑ Crystallinity
 - tensile strength, peak load
 - > 7 elongation at break, ultimate displacement and work to failure
- 2. Bigger impact of temperature (100°C vs RT) than of dose (80 kGy vs 100 kGy)
- 3. Equivalent material properties regardless of radiation source e-beam or x-ray (80 kGy, 100°C)

THANK YOU FOR YOUR TIME

Tensile properties

"Warm irradiation and melting of UHMWPE results in higher ductility and lower strength in comparison with cold irradiation". [Muratoglu et al, 2001] "The higher level of cross-linking causes a decrease in elongation". [Kurtz et al, 2002-2003]

Oonishi H. et al, Improvement of polyethylene by irradiation in artificial joints. Radiation Physics and chemistry, 39, 495-504 (1992)

Oral et al. Increasing irradiation temperature maximizes vitamin E grafting and wear resistance of ultrahigh molecular weight polyethylene. J Biomed Mater res Part B 2013:101B:436-440

Makuuchi et al, Radiation processing of polymer materials and its industrial applications, WILEY, 2012, ISBN: 978-0-470-58769-0

Kurtz et al, Comparison of the properties of annealed crosslinked (Crossfire) and conventional polyethylene as hip bearing materials. Bull. Hosp. Joint Dis. 61 (2002-2003) 17-26

Joon Park, R.S. Lakes Biomaterials: An Introduction Third edition – Springer 2007 ISBN 978-0-387-37879-4

Malito et al, Material properties of ultra-high molecular weight polyethylene: Comparison of tension, compression, nanomechanics and microstructure across clinical formulations

Asano et al, Dose effects of cross-linking polyethylene for total knee arthroplasty on wear performance and mechanical properties, J. Biomed. Mater. Res. B 83 (2007) 615-622

B Braun - Aesculap AG